Sustainable Reservoir Management Approaches Under Impacts of Climate Change - A Case Study of Mangla Reservoir, Pakistan


Book Description

Reservoir sedimentation is a major issue for water resource management around the world. It has serious economic, environmental, and social consequences, such as reduced water storage capacity, increased flooding risk, decreased hydropower generation, and deteriorated water quality. Increased rainfall intensity, higher temperatures, and more extreme weather events due to climate change are expected to exacerbate the problem of reservoir sedimentation. As a result, sedimentation must be managed to ensure the long-term viability of reservoirs and their associated infrastructure. Effective reservoir sedimentation management in the face of climate change necessitates an understanding of the sedimentation process and the factors that influence it, such as land use practices, erosion, and climate. Monitoring and modelling sedimentation rates are also useful tools for forecasting future impacts and making management decisions.The goal of this research is to create long-term reservoir management strategies in the face of climate change by simulating the effects of various reservoir-operating strategies on reservoir sedimentation and sediment delta movement at Mangla Reservoir in Pakistan (the second-largest dam in the country). In order to assess the impact of the Mangla Reservoir's sedimentation and reservoir life, a framework was developed. This framework incorporates both hydrological and morphodynamic models and various soft computing models. In addition to taking climate change uncertainty into consideration, the proposed framework also incorporates sediment source, sediment delivery, and reservoir morphology changes. Furthermore, the purpose of this study is to provide a practical methodology based on the limited data available.In the first phase of this study, it was investigated how to accurately quantify the missing suspended sediment load (SSL) data in rivers by utilizing various techniques, such as sediment rating curves (SRC) and soft computing models (SCMs), including local linear regression (LLR), artificial neural networks (ANN) and wavelet-cum-ANN (WANN). Further, the Gamma and M-test were performed to select the best-input variables and appropriate data length for SCMs development. Based on an evaluation of the outcomes of all leading models for SSL estimation, it can be concluded that SCMs are more effective than SRC approaches. Additionally, the results also indicated that the WANN model was the most accurate model for reconstructing the SSL time series because it is capable of identifying the salient characteristics in a data series.The second phase of this study examined the feasibility of using four satellite precipitation datasets (SPDs) which included GPM, PERSIANN_CDR, CHIRPS, and CMORPH to predict streamflow and sediment loads (SL) within a poorly gauged mountainous catchment, by employing the SWAT hydrological model as well as SWAT coupled soft computing models (SCMs) such as artificial neural networks (SWAT-ANN), random forests (SWAT-RF), and support vector regression (SWAT-SVR). SCMs were developed using the outputs of un-calibrated SWAT hydrological models to improve the predictions. The results indicate that during the entire simulation, the GPM shows the best performance in both schemes, while PERSIAN_CDR and CHIRPS also perform well, whereas CMORPH predicts streamflow for the Upper Jhelum River Basin (UJRB) with relatively poor performance. Among the best GPM-based models, SWAT-RF offered the best performance to simulate the entire streamflow, while SWAT-ANN excelled at simulating the SL. Hence, hydrological coupled SCMs based on SPDs could be an effective technique for simulating streamflow and SL, particularly in complex terrain where gauge network density is low or uneven.The third and last phase of this study investigated the impact of different reservoir operating strategies on Mangla reservoir sedimentation using a 1D sediment transport model. To improve the accuracy of the model, more accurate boundary conditions for flow and sediment load were incorporated into the numerical model (derived from the first and second phases of this study) so that the successive morphodynamic model could precisely predict bed level changes under given climate conditions. Further, in order to assess the long-term effect of a changing climate, a Global Climate Model (GCM) under Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 for the 21st century is used. The long-term modelling results showed that a gradual increase in the reservoir minimum operating level (MOL) slows down the delta movement rate and the bed level close to the dam. However, it may compromise the downstream irrigation demand during periods of high water demand. The findings may help the reservoir managers to improve the reservoir operation rules and ultimately support the objective of sustainable reservoir use for societal benefit.In summary, this study provides comprehensive insights into reservoir sedimentation phenomena and recommends an operational strategy that is both feasible and sustainable over the long term under the impact of climate change, especially in cases where a lack of data exists. Basically, it is very important to improve the accuracy of sediment load estimates, which are essential in the design and operation of reservoir structures and operating plans in response to incoming sediment loads, ensuring accurate reservoir lifespan predictions. Furthermore, the production of highly accurate streamflow forecasts, particularly when on-site data is limited, is important and can be achieved by the use of satellite-based precipitation data in conjunction with hydrological and soft computing models. Ultimately, the use of soft computing methods produces significantly improved input data for sediment load and discharge, enabling the application of one-dimensional hydro-morphodynamic numerical models to evaluate sediment dynamics and reservoir useful life under the influence of climate change at various operating conditions in a way that is adequate for evaluating sediment dynamics.







Reservoir Sedimentation


Book Description

Research on reservoir sedimentation in recent years has been aimed mainly at water resources projects in developing countries. These countries, especially in Africa, often have to cope with long droughts, flash floods and severe erosion problems. Large reservoir capacities are required to capture water provided by flash floods so as to ensure the supply of water in periods of drought. The problem arising however is that these floods, due to their tremendous stream power, carry enormous volumes of sediment which, due to the size of reservoirs, are virtually deposited in toto in the reservoir basin, leading to fast deterioration of a costly investment. Accurate forecasting of reservoir behaviour is therefore of the utmost importance.This book fills a gap in current literature by providing in one volume comprehensive coverage of techniques required to practically investigate the effects sediment deposition in reservoirs has on the viability of water resources projects. Current techniques for practically estimating sediment yield from catchments, estimating the volume of sediment expected to deposit in reservoirs, predicting sediment distribution and calculating scour downstream of reservoirs are evaluated and presented. The liberal use of diagrams and graphs to explain the various techniques enhances understanding and makes practical application simple. A major feature of the book is the application of stream power theory to explain the process of reservoir sedimentation and to develop four new methods for predicting sediment distribution in reservoirs.The book is primarily directed at practising engineers involved in the planning and design of water resources projects and at post-graduate students interested in this field of study.




Extending the Life of Reservoirs


Book Description

Written by two of the world’s leading experts on sediment management, 'Extending the Life of Reservoirs' provides guidance on adopting sediment management practices for hydropower and water supply dam projects. It explains how ensuring long-term resilience of critical infrastructure requires early and constant attention to reservoir sedimentation processes, which can reduce the storage capacity of reservoirs and damage hydro mechanical equipment. The report provides concrete guidance on safeguarding against these effects and preserving the many important services of hydropower and dam projects, including water supply, irrigation, and renewable electricity. In particular, it stresses the importance of integrating sediment management into the early planning phases of projects. 'Extending the Life of Reservoirs' is designed to assist those evaluating dam and hydropower proposals. While for the primary audience includes policy makers, lending agencies, and general practitioners, the level of detail provided in the report should appeal to a wide array of stakeholder groups. The content is neither overly technical nor overly simplistic, and aims to provide practical and useful information. Importantly, this report provides a new perspective on the importance of sediment management that is not found in prior work. It stresses the value of sediment management measures as a robust adaptation measure to support sustainable hydropower. The techniques described in the report make sense regardless of future climate changes, but in many cases have even more value when uncertainty over future hydrological patterns is taken into account.




A Framework to Provide Optimal Management Strategies for California's Reservoirs in Achieving Sustainable Water Supply and High Hydropower Productivity


Book Description

With the increasing demands on freshwater water and clean energy due to population growth and impacts of climate change, the stresses on natural resources are increasing worldwide. Therefore, efficient operation of reservoir systems with the intention of optimizing sustainable water supply and hydropower production is crucially needed by policy and decision makers, and water users. In this dissertation, a framework, including analysis of reservoir controlled outflows, optimization algorithm development, and realistic reservoir modelling, is presented and demonstrated in Chapter 2, 3 and 4, respectively.In Chapter 2, a Classification And Regression Tree (CART) algorithm with an enhanced cross-validation scheme is applied to simulate the human controlled outflows in 9 major reservoirs in California. The proposed approach is capable of incorporating multiple types of information into decision making and mathematically quantifying how releases are related to many decision variables. A verification study has been carried out in 9 major reservoirs in California. Without any prior information, the model is able to identify that the historical operation in Oroville Lake, Shasta Lake and Trinity Lake are highly dependent on policy and regulation, while the reservoirs with low elevations are sensitive to reservoir inflows. The approaches developed in this chapter serves as the analytical tool to help understand reservoir operation.In Chapter 3, an enhanced multi-objective global optimization technique is developed in order to better address multiple conflicting interests from decision makers when water and energy related objectives are jointly considered in reservoir operation. A comparison study has been conducted comparing the enhanced algorithm with multiple cutting-edge multi-objective heuristic search algorithms on various test functions. Results show the enhanced algorithm has superior performance regarding diversity and convergence measures over the other algorithms.Last, a newly developed cascade reservoir optimization model for the Oroville-Thermalito Complex (OTC) in northern California is presented in Chapter 4. Multiple alternative operation strategies that maximize sustainable water supply and hydropower production are derived and recommended for the OTC's operation under various dry/wet conditions. The suggested optimal operation alternative will be intuitive for reservoir operators to further adjust and improve current reservoir operation strategy and planning.




Lake and Reservoir Management


Book Description

Presents readers with an overview of lake management problems and the tools that can be applied to solve probelms. Lake management tools are presented in detail, including environmental technological methods, ecotechnological methods and the application of models to assess the best management strategy.




Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure


Book Description

This volume contains the papers presented at IALCCE2016, the fifth International Symposium on Life-Cycle Civil Engineering (IALCCE2016), to be held in Delft, The Netherlands, October 16-19, 2016. It consists of a book of extended abstracts and a DVD with full papers including the Fazlur R. Khan lecture, keynote lectures, and technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special focus on structural damage processes, life-cycle design, inspection, monitoring, assessment, maintenance and rehabilitation, life-cycle cost of structures and infrastructures, life-cycle performance of special structures, and life-cycle oriented computational tools. The aim of the editors is to provide a valuable source for anyone interested in life-cycle of civil infrastructure systems, including students, researchers and practitioners from all areas of engineering and industry.




The Ecological Bases for Lake and Reservoir Management


Book Description

The Ecological Bases for Lake and Reservoir Management provides a state-of-the-art review of the range of ecologically-based techniques necessary for the holistic management of lakes and their catchments. Most of the methods, case studies and national policies reviewed are directed towards management of the largest problem - eutrophication - with the emphasis on the multiple-scale approach needed for successful management and restoration. Case studies come from the USA and ten European countries, and range from single lakes through to lake districts and national inventories. Several essays precede the practical chapters with thought-provoking comments on the political, social and economic climate of water management.




Proceedings


Book Description