Field Guide to Lens Design


Book Description

The process of designing lenses is both an art and a science. While advances in the field over the past two centuries have done much to transform it from the former category to the latter, much of the lens design process remains encapsulated in the experience and knowledge of industry veterans. This SPIE Field Guide provides a working reference for practicing physicists, engineers, and scientists for deciphering the nuances of basic lens design.




Lens Design


Book Description

There is no shortage of lens optimization software on the market to deal with today's complex optical systems for all sorts of custom and standardized applications. But all of these software packages share one critical flaw: you still have to design a starting solution. Continuing the bestselling tradition of the author's previous books, Lens Design, Fourth Edition is still the most complete and reliable guide for detailed design information and procedures for a wide range of optical systems. Milton Laikin draws on his varied and extensive experience, ranging from innovative cinematographic and special-effects optical systems to infrared and underwater lens systems, to cover a vast range of special-purpose optical systems and their detailed design and analysis. This edition has been updated to replace obsolete glass types and now includes several new designs and sections on stabilized systems, the human eye, spectrographic systems, and diffractive systems. A new CD-ROM accompanies this edition, offering extensive lens prescription data and executable ZEMAX files corresponding to figures in the text. Filled with sage advice and completely illustrated, Lens Design, Fourth Edition supplies hands-on guidance for the initial design and final optimization for a plethora of commercial, consumer, and specialized optical systems.




A Course in Lens Design


Book Description

A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book and a suitable basis for an introductory course in lens design. The mathematics mainly used is college algebra, in a few sections calculus is applied. The book could be used by students of engineering and technical physics and by engineers and scientists.




Handbook of Optical Design


Book Description

Infused with more than 500 tables and figures, this reference clearly illustrates the intricacies of optical system design and evaluation and considers key aspects of component selection, optimization, and integration for the development of effective optical apparatus. The book provides a much-needed update on the vanguard in the field with vivid e




Intermediate Optical Design


Book Description

This second volume based on Michael Kidger's popular short courses and workshops is aimed at readers already familiar with the concepts presented in Fundamental Optical Design (SPIE Press Vol. PM92). It begins with a sweeping discussion of optimization that is written with the user in mind and continues with a unique look at the role of higher-order aberrations. The book's key feature is its astounding presentation of a wide range of practical design examples, covering such problems as secondary spectrum correction, high numerical aperture designs, lasers, zoom lenses, tilted or decentered optical systems, and price and performance requirements. Each scenario is accompanied by an in-depth discussion that goes well beyond the ray aberration plot, including useful insights into an optical designer's thought processes.




Introduction to Lens Design


Book Description

A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.




Modern Lens Design


Book Description

Unlike the first edition, which was more a collection of lens designs for use in larger projects, the 2nd edition of Modern Lens Design is an optical “how-to.” Delving deep into the mechanics of lens design, optics legend Warren J. Smith reveals time-tested methods for designing top-quality lenses. He deals with lens design software, primarily OSLO, by far the current market leaders, and provides 7 comprehensive worked examples, all new to this edition. With this book in hand, there’s no lens an optical engineer can’t design.




Designing Optics Using Code V


Book Description

"This book explains how to design an optical system using the high-end optical design program CODE V. The design process, from lens definition to the description and evaluation of lens errors and onto the improvement of lens performance, will be developed and illustrated using the program. The text is organized so that readers can (1) reproduce each step of the process including the plots for evaluating lens performance and (2) understand the significance of each step in producing a final design"--




Lens Design


Book Description

Lens Design: Automatic and Quasi-Autonomous Computational Methods and Techniques (Second Edition) shows how these new tools can design systems in minutes that would have required weeks or months of labor using older methods. Powerful search routines that can quickly produce excellent designs starting with plane-parallel plates are described. The principles are explained, and data files are provided so the user can duplicate these systems and learn how to use the new software to solve unexpected problems should they occur. Automatic substitution of real glass types for a glass model, and automatic matching to the testplates of a selected vendor, are fully explained, with examples. Part of IOP Series in Emerging Technologies in Optics and Photonics.