Proceedings of the Multimedia University Engineering Conference (MECON 2022)


Book Description

This is an open access book.The Multimedia University Engineering Conference 2022 (MECON 2022) aims to bring together related research scholars, educators, practitioners, policy makers, enthusiasts, fellow students, and industries to share and exchange their research experiences and results on all aspects of engineering technologies from various perspectives, disciplines, and fields. It also offers an interdisciplinary platform for all stakeholders to present and discuss the most latest trends, innovations, and concerns as well as practical challenges encountered, and solutions adopted in the realm of engineering technologies. This conference is being co-organised by the Faculty of Engineering (FOE) and Faculty of Engineering and Technology (FET), Multimedia University. MECON 2022 carries the theme `Sustainable Engineering for a Sustainable Future’.




Industrial Automation and Robotics


Book Description

This book discusses the radical technological changes occurring due to Industry 4.0, with a focus on offering a better understanding of the Fourth Industrial Revolution. It also presents a detailed analysis of interdisciplinary knowledge, numerical modeling and simulation, and the application of cyber–physical systems, where information technology and physical devices create synergic systems leading to unprecedented efficiency. The book focuses on industrial applications of automation and robotics. It covers recent developments and trends occurring in both computer-aided manufacturing techniques, as well as computer-aided assembly techniques. Robots using embedded systems and artificial intelligence applications are also covered. Industrial Automation and Robotics: Techniques and Applications offers theoretical results, practical solutions, and guidelines that are valuable for both researchers and those working in the area of engineering.




Machining of Nanocomposites


Book Description

Nanocomposites (both heterogeneous and anisotropic) are hard to machine due to their enhanced properties and there is a need to know about the problems associated with the machining of nanocomposites by various conventional as well as non-conventional machining operations. Machining of nanocomposites emphasizes on different fabrication methods to develop nanocomposites (polymers, metals, and ceramics) and different machining processes used in industries. Further, it describes issues and challenges including research trends associated with the same. It also evaluates mechanical and wear properties of the composites as well. Features: Covers manufacturing process of nanocomposites. Includes conventional and non-conventional machining process and relevant applications. Addresses effect of different nano-reinforcements on machinability. Discusses usage of design of experiments and optimization technique to improve the machinability of nanocomposites. Reviews challenges on machining of nanocomposites and its remedies. This book aims at Researchers, Graduate students in Mechanical Engineering, and Materials Sciences including Composites, Nanotechnology, and Machining.




Modern Hybrid Machining and Super Finishing Processes


Book Description

This book captures the recent breakthroughs in subtractive manufacturing and difficult-to-machine, material-based, modern machining techniques. It illustrates various combinations of hybrid machining and super finishing, and outlines the critical area profile accuracy, high-precision machining, high tolerance, surface quality, chipping, and cracking for converting into new applications. Modern Hybrid Machining and Super Finishing Processes: Technology and Applications provides scientific and technological insights on subtractive manufacturing routes. It covers a wide range of micromachining parts, electronic components, metrological devices, and biomedical instruments on materials such as titanium, stainless steel, high-strength temperature-resistant alloys, fiber-reinforced composites, and ceramics, refractories, and other difficult-to-machine alloys. The book emphasizes machined surface accuracy and quality of surface, productivity, and automatization. It also covers creating complex, intricate, and complicated shapes for difficult-to-machine materials. The book goes on to offer an investigation on electrochemical discharge machining, abrasive-based nano-finishing, and rotary ultrasonic machining-based parametric combination, as well as discuss the latest trends in hybrid machining combined processes. This book is a firsthand reference for commercial organizations mimicking modern hybrid machining processes by targeting difficult-to-machine, materials-based applications. By capturing the current trends of today’s manufacturing practices, this book becomes a one-stop resource for scholars, manufacturing professionals, engineers, and academic researchers.




Advances in Engineering Research and Application


Book Description

The International Conference on Engineering Research and Applications (ICERA 2022), held on December 1-2, 2022, at Thai Nguyen University of Technology in Thai Nguyen, Vietnam, provided an international forum to disseminate information on latest theories and practices in engineering research and applications. The conference focused on original research work in areas including mechanical engineering, materials and mechanics of materials, mechatronics and micro mechatronics, automotive engineering, electrical and electronics engineering, information and communication technology. By disseminating the latest advances in the field, the Proceedings of ICERA 2022, Advances in Engineering Research and Application, assists academics and professionals alike to reshape their thinking on sustainable development.




Functional Composite Materials: Manufacturing Technology and Experimental Application


Book Description

This book highlights the advancements in the manufacture and testing of functional composites, metal matrix composites and polymer matrix composites. Chapters provide information about machinability studies of metals and composites using a variety of analytical techniques. The 12 book chapters also highlight updates in manufacturing technologies like CNC turning processes, electrical discharge machining, end milling, abrasive jet machining, electro chemical machining, additive manufacturing, and resistance spot welding. Readers will learn how to solve applied problems in industrial processing and applications. The book is of significant interest to industrialists working on the basic and experimental parameters for fabricating functional composites and manufacturing technology. Because of the multidisciplinary nature of the presented topics, the information presented in the book is of value to a broad audience involved in research, including materials scientists, chemists, physicists, manufacturing and chemical engineers and processing specialists who are involved and interested in the frontiers of composite materials.




Advances in CAD/CAM/CAE Technologies


Book Description

CAD/CAM/CAE technologies find more and more applications in today’s industries, e.g., in the automotive, aerospace, and naval sectors. These technologies increase the productivity of engineers and researchers to a great extent, while at the same time allowing their research activities to achieve higher levels of performance. A number of difficult-to-perform design and manufacturing processes can be simulated using more methodologies available, i.e., experimental work combined with statistical tools (regression analysis, analysis of variance, Taguchi methodology, deep learning), finite element analysis applied early enough at the design cycle, CAD-based tools for design optimizations, CAM-based tools for machining optimizations.




Advances in Manufacturing and Industrial Engineering


Book Description

This book presents selected peer reviewed papers from the International Conference on Advanced Production and Industrial Engineering (ICAPIE 2019). It covers a wide range of topics and latest research in mechanical systems engineering, materials engineering, micro-machining, renewable energy, industrial and production engineering, and additive manufacturing. Given the range of topics discussed, this book will be useful for students and researchers primarily working in mechanical and industrial engineering, and energy technologies.




Sustainable Machining


Book Description

This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.




Optimization of Turning Process


Book Description

The book contains Optimization of Multi response of Turning Process Parameters by Using Tool Inserts, now a days mostly used optimization technique which is better than single response optimizing technique because all the output is affected at a time by all the input factors. The objective of this book is to determine the optimal setting of cutting parameters speed (N)m/min, depth of cut(d) mm, feed(f)mm/rev, Nose Radius(r)mm, variation amplitude(mm/sec2), vibration frequency(kHz) in Cutting tool inserts to minimize surface roughness (Ra) and to increase the Tool life. In this book the experiment has been carried out on CNC (SPINNER 15) lathe in dry, Wet and MQL (Minimum Quantity Lubrication) cutting Condition turning of a commercially used EN 24 grade steel as a work material and carbide insert tool (CNMG120408 CNMG120412). This book highlights use of Taguchi experiment design to optimize the multi response parameters on turning operation. For this experiment Taguchi design of experiment was carried out to collect the data for surface roughness and tool vibration. The results indicate the optimum values of the input factors and the results are conformed by a confirmatory test. This book describes use and steps of Taguchi design of experiments and orthogonal array to find a specific range and combinations of turning parameters like cutting speed, feed rate and depth of cut, Nose Radius and Cutting condition to achieve optimal values of response variables like surface roughness, tool life, material removal rate in turning of Split Bush of EN24 Material.