Optimization of Pharmaceutical Processes


Book Description

Optimization of Pharmaceutical Processes presents contributions from leading authorities in the fields of optimization and pharmaceutical manufacturing. Formulated within structured frameworks, practical examples and applications are given as guidance to apply optimization techniques to most aspects of pharmaceutical processes from design, to lab and pilot scale, and finally to manufacturing. The increasing demand for better quality, higher yield, more efficient-optimized and green pharmaceutical processes, indicates that optimal conditions for production must be applied to achieve simplicity, lower costs and superior yield. The application of such methods in the pharmaceutical industry is not trivial. Quality of the final product is of major importance to human health and the need for deep knowledge of the process parameters and the optimization of the processes are imperative. The volume, which includes new methods as well as review contributions will benefit a wide readership including engineers in pharmaceuticals, chemical, biological, to name just a few.




Pharmaceutical Drug Product Development and Process Optimization


Book Description

Pharmaceutical manufacturers are constantly facing quality crises of drug products, leading to an escalating number of product recalls and rejects. Due to the involvement of multiple factors, the goal of achieving consistent product quality is always a great challenge for pharmaceutical scientists. This volume addresses this challenge by using the Quality by Design (QbD) concept, which was instituted to focus on the systematic development of drug products with predefined objectives to provide enhanced product and process understanding. This volume presents and discusses the vital precepts underlying the efficient, effective, and cost effective development of pharmaceutical drug products. It focuses on the adoption of systematic quality principles of pharmaceutical development, which is imperative in achieving continuous improvement in end-product quality and also leads to reducing cost, time, and effort, while meeting regulatory requirements. The volume covers the important new advances in the development of solid oral dosage forms, modified release oral dosage forms, parenteral dosage forms, semisolid dosage forms, transdermal drug, delivery systems, inhalational dosage forms, ocular drug delivery systems, nanopharmaceutical products, and nanoparticles for oral delivery.




Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes


Book Description

Stochastic global optimization methods and applications to chemical, biochemical, pharmaceutical and environmental processes presents various algorithms that include the genetic algorithm, simulated annealing, differential evolution, ant colony optimization, tabu search, particle swarm optimization, artificial bee colony optimization, and cuckoo search algorithm. The design and analysis of these algorithms is studied by applying them to solve various base case and complex optimization problems concerning chemical, biochemical, pharmaceutical, and environmental engineering processes. Design and implementation of various classical and advanced optimization strategies to solve a wide variety of optimization problems makes this book beneficial to graduate students, researchers, and practicing engineers working in multiple domains. This book mainly focuses on stochastic, evolutionary, and artificial intelligence optimization algorithms with a special emphasis on their design, analysis, and implementation to solve complex optimization problems and includes a number of real applications concerning chemical, biochemical, pharmaceutical, and environmental engineering processes.







Process Systems Engineering for Pharmaceutical Manufacturing


Book Description

Process Systems Engineering for Pharmaceutical Manufacturing: From Product Design to Enterprise-Wide Decisions, Volume 41, covers the following process systems engineering methods and tools for the modernization of the pharmaceutical industry: computer-aided pharmaceutical product design and pharmaceutical production processes design/synthesis; modeling and simulation of the pharmaceutical processing unit operation, integrated flowsheets and applications for design, analysis, risk assessment, sensitivity analysis, optimization, design space identification and control system design; optimal operation, control and monitoring of pharmaceutical production processes; enterprise-wide optimization and supply chain management for pharmaceutical manufacturing processes. Currently, pharmaceutical companies are going through a paradigm shift, from traditional manufacturing mode to modernized mode, built on cutting edge technology and computer-aided methods and tools. Such shifts can benefit tremendously from the application of methods and tools of process systems engineering. - Introduces Process System Engineering (PSE) methods and tools for discovering, developing and deploying greener, safer, cost-effective and efficient pharmaceutical production processes - Includes a wide spectrum of case studies where different PSE tools and methods are used to improve various pharmaceutical production processes with distinct final products - Examines the future benefits and challenges for applying PSE methods and tools to pharmaceutical manufacturing




Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology


Book Description

Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized. - Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products - Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years - Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry




Pharmaceutical Product Development


Book Description

Pharmaceutical product development is a multidisciplinary activity involving extensive efforts in systematic product development and optimization in compliance with regulatory authorities to ensure the quality, efficacy and safety of resulting products.Pharmaceutical Product Development equips the pharmaceutical formulation scientist with extensive




Experimental Design and Process Optimization


Book Description

Experimental Design and Process Optimization delves deep into the design of experiments (DOE). The book includes Central Composite Rotational Design (CCRD), fractional factorial, and Plackett and Burman designs as a means to solve challenges in research and development as well as a tool for the improvement of the processes already implemented. Appr




Continuous Manufacturing of Pharmaceuticals


Book Description

A comprehensive look at existing technologies and processes for continuous manufacturing of pharmaceuticals As rising costs outpace new drug development, the pharmaceutical industry has come under intense pressure to improve the efficiency of its manufacturing processes. Continuous process manufacturing provides a proven solution. Among its many benefits are: minimized waste, energy consumption, and raw material use; the accelerated introduction of new drugs; the use of smaller production facilities with lower building and capital costs; the ability to monitor drug quality on a continuous basis; and enhanced process reliability and flexibility. Continuous Manufacturing of Pharmaceuticals prepares professionals to take advantage of that exciting new approach to improving drug manufacturing efficiency. This book covers key aspects of the continuous manufacturing of pharmaceuticals. The first part provides an overview of key chemical engineering principles and the current regulatory environment. The second covers existing technologies for manufacturing both small-molecule-based products and protein/peptide products. The following section is devoted to process analytical tools for continuously operating manufacturing environments. The final two sections treat the integration of several individual parts of processing into fully operating continuous process systems and summarize state-of-art approaches for innovative new manufacturing principles. Brings together the essential know-how for anyone working in drug manufacturing, as well as chemical, food, and pharmaceutical scientists working on continuous processing Covers chemical engineering principles, regulatory aspects, primary and secondary manufacturing, process analytical technology and quality-by-design Contains contributions from researchers in leading pharmaceutical companies, the FDA, and academic institutions Offers an extremely well-informed look at the most promising future approaches to continuous manufacturing of innovative pharmaceutical products Timely, comprehensive, and authoritative, Continuous Manufacturing of Pharmaceuticals is an important professional resource for researchers in industry and academe working in the fields of pharmaceuticals development and manufacturing.




Pharmaceutical Quality by Design


Book Description

Pharmaceutical Quality by Design: Principles and Applications discusses the Quality by Design (QbD) concept implemented by regulatory agencies to ensure the development of a consistent and high-quality pharmaceutical product that safely provides the maximum therapeutic benefit to patients. The book walks readers through the QbD framework by covering the fundamental principles of QbD, the current regulatory requirements, and the applications of QbD at various stages of pharmaceutical product development, including drug substance and excipient development, analytical development, formulation development, dissolution testing, manufacturing, stability studies, bioequivalence testing, risk and assessment, and clinical trials. Contributions from global leaders in QbD provide specific insight in its application in a diversity of pharmaceutical products, including nanopharmaceuticals, biopharmaceuticals, and vaccines. The inclusion of illustrations, practical examples, and case studies makes this book a useful reference guide to pharmaceutical scientists and researchers who are engaged in the formulation of various delivery systems and the analysis of pharmaceutical product development and drug manufacturing process. - Discusses vital QbD precepts and fundamental aspects of QbD implementation in the pharma, biopharma and biotechnology industries - Provides helpful illustrations, practical examples and research case studies to explain QbD concepts to readers - Includes contributions from global leaders and experts from academia, industry and regulatory agencies