Optimization of Process Parameters for Commercially Pure Titanium in the Laser Engineered Net Shaping Process


Book Description

One of the main factors limiting progress and mainstream acceptance of metal additive manufacturing (MAM), including the laser engineered net shaping (LENS) process, is lack of consistency between different processes, different feedstock materials, and even different individual machines. To achieve the consistency needed to advance the technology, the processing parameters must be well understood and optimized for a wide range of applications and materials. One material with great potential, but has very limited research so far, is commercially pure titanium (CP Ti). CP Ti can be used in many applications ranging from architecture to its use in desalination plants, but one of the most promising applications for CP Ti is medical implants. The ability to use CP Ti in MAM would be a great stride in advancing the quality of medical implants, but for MAM to become a mainstream method of producing medical implants, the consistency of the process needs to be ensured. The first step of gaining consistency in MAM with CP Ti is to acquire a greater understanding of the process parameters involved and to optimize the processing parameters for the application at hand. This Thesis aims to find process parameters for CP Ti that are both efficient and cost savings along with providing optimal mechanical properties. Once the trends of varying process parameters can be seen, an optimal set of parameters can be seen and utilized to get the full potential from depositing CP Ti in the LENS process.







Additive Manufacturing Technologies From an Optimization Perspective


Book Description

In this technology-driven era, conventional manufacturing is increasingly at risk of reaching its limit, and a more design-driven manufacturing process, additive manufacturing, might just hold the key to innovation. Offering a higher degree of design freedom, the optimization and integration of functional features, and the manufacturing of small batch sizes, additive manufacturing is changing industry as we know it. Additive Manufacturing Technologies From an Optimization Perspective is a critical reference source that provides a unified platform for the dissemination of basic and applied knowledge about additive manufacturing. It carefully examines how additive manufacturing is increasingly being used in series production, giving those in the most varied sectors of industry the opportunity to create a distinctive profile for themselves based on new customer benefits, cost-saving potential, and the ability to meet sustainability goals. Highlighting topics such as bio-printing, tensile strength, and cell printing, this book is ideally designed for academicians, students, engineers, scientists, software developers, architects, entrepreneurs, and medical professionals interested in advancements in next-generation manufacturing.




Laser Engineered Net Shaping (LENS{trademark}) Process


Book Description

Rapid prototyping (RP) has revolutionized the approach to fabricating geometrically complex hardware from a CAD solid model. The various RP techniques allow component designers to directly fabricate conceptual models in plastics and polymer coated metals; however, each of the techniques requires additional processes, e.g. investment casting, to allow the fabrication of functional metallic hardware. This limitation has provided the impetus for further development of solid freeform fabrication technologies which enable fabrication of functional metallic hardware directly from the CAD solid model. The Laser Engineered Net Shaping (LENS{trademark}) process holds promise in satisfying this need. This newly emerging technology possesses the capability to fabricate fully dense components with good dimensional accuracy and with unique materials properties. Relatively complex geometrical shapes have been fabricated using this technology. In continuing to develop the LENS{trademark} process, further advancements are required. The functional dependence of the component surface finish and microstructural characteristics on process parameters including power size and size distribution are being evaluated. A set of statistically designed experiments is being used to sort through the various process parameters and identify significant process variables for improving surface finish and achieving optimum material microstructural properties.




Process Mapping and Optimization of Titanium Parts Made by Binder Jetting Additive Manufacturing


Book Description

Additive manufacturing (AM) has recently seen an increase in adoption outside of its traditional role of rapid prototyping and is being used more and more for the production of functional components. The increased adoption is due in part to better systems and a better understanding of the AM process. Binder jetting additive manufacturing (BJAM), however, has seen significantly less adoption compared to other AM technologies and that is likely because there has been comparatively less work done on improving and understanding the process. For BJAM to see more widespread use, a more thorough understanding of the process both during printing and sintering is required. One area where BJAM can see more substantive adoption is in the medical and dental fields. Porous parts, especially implants, can have highly beneficial properties compared to solid parts. However, the porosity in these components needs to be tailored depending on the application. BJAM allows for this level of control, as the density of sintered parts can be controlled anywhere from around 50% to nearly 100%. Tailoring these properties requires controlling the density of the green parts (through printing) and subsequently the final parts (through sintering), as many part properties are directly linked to density. Previous studies in the group focused on the printing of commercially pure titanium components. This thesis adds onto that work by examining the effects of powder sizes and sintering on green and final densities. Five sample types were produced to evaluate the sintering process. The powder size distribution was varied between samples while the printing parameters were kept fixed. This was done in order to isolate the effects of the powder size distribution from the printing parameters. Two mono-modal distributions were used (45-106[mu]m and 106-150[mu]m) as well as three bi-modal distributions (0-45[mu]m/45-106[mu]m, 0-45[mu]m/106-150[mu]m and 45-106[mu]m/106-150[mu]m). The completed work focuses on two main areas. The first area is more traditional sinter theory and sinter structure analysis, which is done to gain insight into how different particle sizes and the specific powder systems seen in BJAM parts affects the sintering process. This analysis is done using computed tomography (CT), where both the green and sintered parts are scanned and compared. Four major features are evaluated from the CT scans, which are bulk porosity, porosity per layer, particle size and pore size. Parts are sintered at 1000°C and 1400°C to produce parts that undergo only non-densifying and densifying sintering respectively. From the results, it was found that samples with the fine powder additions (0-45[mu]m) sintered with substantially higher levels of densification (at both 1000°C and 1400°C) compared to the other powder types comprised of larger particles. All of the samples showed a periodic density change corresponding to the height of the printed layers. Parts were found to be the most dense within a layer and least dense at the layer interfaces. After sintering, the relative density variation was unchanged for samples with larger particles and exacerbated for samples made with finer particles. Samples with the finer particles were able to achieve bulk densities of 82.7% and 84.6% when sintered at 1400°C. However, the density fluctuated from nearly 100% within layers to approximately 60% at the layer interfaces. The second area of focus is on the development of a tool to predict the final density of sintered parts. The development of this tool drew heavily from existing information on the sintering of powder metallurgy components. From a literature review, the master sinter curve (MSC), a powder metallurgy technique based on the combined stage sinter theory, was deemed to be an excellent basis for developing a predictive tool. The MSC is constructed using experimental dilatometry results, avoiding the need for a more comprehensive analysis of the powders used. To generate MSCs for each powder type, samples were sintered in a dilatometer from room temperature up to 1550°C at various heating rates and then cooled quickly. The dilatometry results are then processed to create MSCs. Reliable MSCs could not be made from the dilatometry results. The specific push-rod dilatometry analysis that was used as part of this work (required due to the system configuration) gave poor shrinkage results. These results could not be used to make good quality MSCs and prevented the generation of the predictive tool. However, since the general process has already been made as part of this work, only new dilatometry measurements are required to be able to create proper MSCs.




Machining of Titanium Alloys


Book Description

This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.




Additive Manufacturing of Titanium Alloys


Book Description

Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities provides alternative methods to the conventional approach for the fabrication of the majority of titanium components produced via the cast and wrought technique, a process which involves a considerable amount of expensive machining. In contrast, the Additive Manufacturing (AM) approach allows very close to final part configuration to be directly fabricated minimizing machining cost, while achieving mechanical properties at least at cast and wrought levels. In addition, the book offers the benefit of significant savings through better material utilization for parts with high buy-to-fly ratios (ratio of initial stock mass to final part mass before and after manufacturing). As titanium additive manufacturing has attracted considerable attention from both academicians and technologists, and has already led to many applications in aerospace and terrestrial systems, as well as in the medical industry, this book explores the unique shape making capabilities and attractive mechanical properties which make titanium an ideal material for the additive manufacturing industry. - Includes coverage of the fundamentals of microstructural evolution in titanium alloys - Introduces readers to the various Additive Manufacturing Technologies, such as Powder Bed Fusion (PBF) and Directed Energy Deposition (DED) - Looks at the future of Titanium Additive Manufacturing - Provides a complete review of the science, technology, and applications of Titanium Additive Manufacturing (AM)




Laser Additive Manufacturing of High-Performance Materials


Book Description

This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering and mechanical engineering. This is a book for researchers, students, practicing engineers and manufacturing industry professionals interested in laser additive manufacturing and laser materials processing. Dongdong Gu is a Professor at College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), PR China.




Metals for Biomedical Devices


Book Description

Despite recent advances in medical devices using other materials, metallic implants are still one of the most commercially significant sectors of the industry. Given the widespread use of metals in medical devices, it is vital that the fundamentals and behaviour of this material are understood. Metals in biomedical devices reviews the latest techniques in metal processing methods and the behaviour of this important material.Initial chapters review the current status and selection of metals for biomedical devices. Chapters in part two discuss the mechanical behaviour, degradation and testing of metals with specific chapters on corrosion, wear testing and biocompatibility of biomaterials. Part three covers the processing of metals for biomedical applications with chapters on such topics as forging metals and alloys, surface treatment, coatings and sterilisation. Chapters in the final section discuss clinical applications of metals such as cardiovascular, orthopaedic and new generation biomaterials.With its distinguished editor and team of expert contributors, Metals for biomedical devices is a standard reference for materials scientists, researchers and engineers working in the medical devices industry and academia. - Reviews the latest techniques in metal processing methods including surface treatment and sterilisation - Examines metal selection for biomedical devices considering biocompatibility of various metals - Assesses mechanical behaviour and testing of metals featuring corrosion, fatigue and wear




Titanium and Titanium Alloys


Book Description

This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.