MATLAB Optimization Techniques


Book Description

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Optimization Techniques introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. It begins by introducing the MATLAB environment and the structure of MATLAB programming before moving on to the mathematics of optimization. The central part of the book is dedicated to MATLAB’s Optimization Toolbox, which implements state-of-the-art algorithms for solving multiobjective problems, non-linear minimization with boundary conditions and restrictions, minimax optimization, semi-infinitely constrained minimization and linear and quadratic programming. A wide range of exercises and examples are included, illustrating the most widely used optimization methods.




Introduction to Nonlinear Optimization


Book Description

This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.




MATLAB Optimization Functions and Examples


Book Description

MATLAB Optimization Toolbox provides widely used algorithms for and large-scale optimization. These algorithms solve constrained and unconstrained continuous and discrete problems. The toolbox, developed in this book, includes functions for linear programming, quadratic programming, binary integer programming, nonlinear optimization, nonlinear least squares, systems of nonlinear equations, and multiobjective optimization. You can use them to find optimal solutions, perform tradeoff analyses, balance multiple design alternatives, and incorporate optimization methods into algorithms and models. This books develops the optimization functions in MATLAB and presents examples.




Optimization in Practice with MATLAB


Book Description

This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB® software.




Applied Optimization with MATLAB Programming


Book Description

Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB® tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB® code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.




Nonlinear Multiobjective Optimization


Book Description

Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.




Optimization of Power System Problems


Book Description

This book presents integrated optimization methods and algorithms for power system problems along with their codes in MATLAB. Providing a reliable and secure power and energy system is one of the main challenges of the new era. Due to the nonlinear multi-objective nature of these problems, the traditional methods are not suitable approaches for solving large-scale power system operation dilemmas. The integration of optimization algorithms into power systems has been discussed in several textbooks, but this is the first to include the integration methods and the developed codes. As such, it is a useful resource for undergraduate and graduate students, researchers and engineers trying to solve power and energy optimization problems using modern technical and intelligent systems based on theory and application case studies. It is expected that readers have a basic mathematical background.




Solving Optimization Problems with MATLAB®


Book Description

This book focuses on solving optimization problems with MATLAB. Descriptions and solutions of nonlinear equations of any form are studied first. Focuses are made on the solutions of various types of optimization problems, including unconstrained and constrained optimizations, mixed integer, multiobjective and dynamic programming problems. Comparative studies and conclusions on intelligent global solvers are also provided.




Optimization in Practice with MATLAB®


Book Description

Optimization in Practice with MATLAB® provides a unique approach to optimization education. It is accessible to both junior and senior undergraduate and graduate students, as well as industry practitioners. It provides a strongly practical perspective that allows the student to be ready to use optimization in the workplace. It covers traditional materials, as well as important topics previously unavailable in optimization books (e.g. numerical essentials - for successful optimization). Written with both the reader and the instructor in mind, Optimization in Practice with MATLAB® provides practical applications of real-world problems using MATLAB®, with a suite of practical examples and exercises that help the students link the theoretical, the analytical, and the computational in each chapter. Additionally, supporting MATLAB® m-files are available for download via www.cambridge.org.messac. Lastly, adopting instructors will receive a comprehensive solution manual with solution codes along with lectures in PowerPoint with animations for each chapter, and the text's unique flexibility enables instructors to structure one- or two-semester courses.




Fundamentals of Optimization Techniques with Algorithms


Book Description

Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral role in computer-aided design. Fundamentals of Optimization Techniques with Algorithms presents a complete package of various traditional and advanced optimization techniques along with a variety of example problems, algorithms and MATLAB© code optimization techniques, for linear and nonlinear single variable and multivariable models, as well as multi-objective and advanced optimization techniques. It presents both theoretical and numerical perspectives in a clear and approachable way. In order to help the reader apply optimization techniques in practice, the book details program codes and computer-aided designs in relation to real-world problems. Ten chapters cover, an introduction to optimization; linear programming; single variable nonlinear optimization; multivariable unconstrained nonlinear optimization; multivariable constrained nonlinear optimization; geometric programming; dynamic programming; integer programming; multi-objective optimization; and nature-inspired optimization. This book provides accessible coverage of optimization techniques, and helps the reader to apply them in practice. - Presents optimization techniques clearly, including worked-out examples, from traditional to advanced - Maps out the relations between optimization and other mathematical topics and disciplines - Provides systematic coverage of algorithms to facilitate computer coding - Gives MATLAB© codes in relation to optimization techniques and their use in computer-aided design - Presents nature-inspired optimization techniques including genetic algorithms and artificial neural networks