Optimizing Dual-Doppler Lidar Measurements of Surface Layer Coherent Structures with Large-Eddy Simulations


Book Description

Coherent structures are patterns in the wind field of the atmospheric boundary layer. The deployment of two scanning Doppler lidars facilitates the measurement of the horizontal wind field, but the inherent averaging processes complicate an interpretation of the results. To assess the suitability of this technique for coherent structure detection large-eddy simulations are used as a basis for virtual measurements, and the effects of the lidar technique on the wind field structure are analyzed.




Optimizing Dual-Doppler Lidar Measurements of Surface Layer Coherent Structures With Large-Eddy Simulations


Book Description

Coherent structures are patterns in the wind field of the atmospheric boundary layer. The deployment of two scanning Doppler lidars facilitates the measurement of the horizontal wind field, but the inherent averaging processes complicate an interpretation of the results. To assess the suitability of this technique for coherent structure detection large-eddy simulations are used as a basis for virtual measurements, and the effects of the lidar technique on the wind field structure are analyzed. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




Convective precipitation simulated with ICON over heterogeneous surfaces in dependence on model and land-surface resolution


Book Description

The impact of land-surface properties like vegetation, soil type, soil moisture, and the orography on the atmosphere is manifold. These features determine the evolution of the atmospheric boundary layer, convective conditions, cloud evolution and precipitation. The impact of model grid spacing and land-surface resolution on convective precipitation over heterogeneous surfaces is investigated using ICOsahedral Nonhydrostatic (ICON) simulations within the framework of the HD(CP)2 project.




Boundary-Layer Processes Producing Mesoscale Water-Vapour Variability over a Mountainous Island


Book Description

Over complex terrain, spatial inhomogeneities of pre-convective atmospheric conditions occur due to convection and mesoscale transport processes. This thesis focuses on the identification of these processes over the mountainous island of Corsica and on the evaluation of their impact on the spatial variability of water vapour, convection-related parameters and the evolution of deep convection by means of observations.
















Representation of warm conveyor belts in sub-seasonal forecast models and the link to Atlantic-European weather regimes


Book Description

This study systematically investigates the representation of warm conveyor belts (WCBs) in large reforecast data sets of different numerical weather prediction models and evaluates the role of WCBs for the onset and life cycle of Atlantic-European weather regimes. The results emphasize the importance of accurate forecast of WCBs for sub-seasonal prediction on time scales beyond two weeks and tie the low forecast skill of blocked weather regimes over Europe to misrepresented WCBs.




Perspectives on warm conveyor belts - sensitivities to ensemble configuration and the role for forecast error


Book Description

Warm conveyor belts (WCBs) are weather systems that substantially modulate the large-scale extratropical circulation. As they can amplify forecast errors and project them onto the Rossby wave pattern, they are of high relevance for numerical weather prediction. This work elaborates on two aspects of WCBs in the context of ensemble forecasts: (1) sensitivities of WCBs to the representation of initial condition and model uncertainties, and (2) the role of WCBs for forecast error growth.