Introduction to Optimum Design


Book Description

Introduction to Optimum Design, Fourth Edition, carries on the tradition of the most widely used textbook in engineering optimization and optimum design courses. It is intended for use in a first course on engineering design and optimization at the undergraduate or graduate level in engineering departments of all disciplines, with a primary focus on mechanical, aerospace, and civil engineering courses. Through a basic and organized approach, the text describes engineering design optimization in a rigorous, yet simplified manner, illustrates various concepts and procedures with simple examples, and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text using Excel and MATLAB as learning and teaching aids. This fourth edition has been reorganized, rewritten in parts, and enhanced with new material, making the book even more appealing to instructors regardless of course level. - Includes basic concepts of optimality conditions and numerical methods that are described with simple and practical examples, making the material highly teachable and learnable - Presents applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Provides practical design examples that introduce students to the use of optimization methods early in the book - Contains chapter on several advanced optimum design topics that serve the needs of instructors who teach more advanced courses




Introduction to Optimum Design


Book Description

Introduction to Optimum Design is the most widely used textbook in engineering optimization and optimum design courses. It is intended for use in a first course on engineering design and optimization at the undergraduate or graduate level within engineering departments of all disciplines, but primarily within mechanical, aerospace and civil engineering. The basic approach of the text is to describe an organized approach to engineering design optimization in a rigorous yet simplified manner, illustrate various concepts and procedures with simple examples, and demonstrate their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB are featured throughout as learning and teaching aids. The 3rd edition has been reorganized and enhanced with new material, making the book even more appealing to instructors regardless of the level they teach the course. Examples include moving the introductory chapter on Excel and MATLAB closer to the front of the book and adding an early chapter on practical design examples for the more introductory course, and including a final chapter on advanced topics for the purely graduate level course. Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable. Applications of the methods for structural, mechanical, aerospace and industrial engineering problems. Introduction to MATLAB Optimization Toolbox. Optimum design with Excel Solver has been expanded into a full chapter. Practical design examples introduce students to usage of optimization methods early in the book. New material on several advanced optimum design topics serves the needs of instructors teaching more advanced courses.




Transactions of the American Society of Civil Engineers


Book Description

Vols. 29-30 contain papers of the International Engineering Congress, Chicago, 1893; v. 54, pts. A-F, papers of the International Engineering Congress, St. Louis, 1904.




Case Studies in Optimal Design and Maintenance Planning of Civil Infrastructure Systems


Book Description

Sponsored by the Structural Engineering Institute of ASCE. This collection contains 19 papers on the optimal design and maintenance planning of civil infrastructure systems such asbridges, buildings, transmission line structures, and nuclear power plants. The authors?coming from Austria, Canada, Denmark, England, Germany, Israel, Japan, Malaysia, Mexico, Switzerland, and the United States?offer case studies that are detailed and research findings that describe applications of life-cycle, reliability and optimization theories to civil infrastructure systems. Topics include: prioritization of bridge maintenance needs; life-cycle optimization of structures; cost-effectiveness optimization for aseismic design criteria of buildings; condition assessment and maintenance of aging structures in critical facilities; condition assessment of bridges; optimization of quality assurance of welded structures; optimal reliability-based bridge maintenance planning; effective reanalysis for damaged structures; optimal design of transmission line structures; optimization and reliability-lifetime oriented design; and optimum policy for civil infrastructure improvement decision making. This book serves as a valuable reference to engineers and managers concerned with design and maintenance planning of civil infrastructure systems.




Handbook of AI-based Metaheuristics


Book Description

At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms. This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.




Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision


Book Description

This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.