Optimum-Path Forest


Book Description

The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions. - Presents the first book on Optimum-path Forest - Shows how it can be used with Deep Learning - Gives a wide range of applications - Includes the methods, underlying theory and applications of Optimum-Path Forest (OPF)




Optimum-Path Forest


Book Description

Optimum-Path Forest: Theory, Algorithms, and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions. Presents the first book on Optimum-path Forest Shows how it can be used with Deep Learning Gives a wide range of applications Includes the methods, underlying theory and applications of Optimum-Path Forest (OPF)




Ant Colony Optimization


Book Description

An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.




Hands-On Machine Learning with R


Book Description

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.




Introduction to Statistical Machine Learning


Book Description

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials




Handbook Of Pattern Recognition And Computer Vision (5th Edition)


Book Description

Pattern recognition, image processing and computer vision are closely linked areas which have seen enormous progress in the last fifty years. Their applications in our daily life, commerce and industry are growing even more rapidly than theoretical advances. Hence, the need for a new handbook in pattern recognition and computer vision every five or six years as envisioned in 1990 is fully justified and valid.The book consists of three parts: (1) Pattern recognition methods and applications; (2) Computer vision and image processing; and (3) Systems, architecture and technology. This book is intended to capture the major developments in pattern recognition and computer vision though it is impossible to cover all topics.The chapters are written by experts from many countries, fully reflecting the strong international research interests in the areas. This fifth edition will complement the previous four editions of the book.




Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications


Book Description

This book constitutes the refereed proceedings of the 16th Iberoamerican Congress on Pattern Recognition, CIARP 2011, held in Pucón, Chile, in November 2011. The 81 revised full papers presented together with 3 keynotes were carefully reviewed and selected from numerous submissions. Topics of interest covered are image processing, restoration and segmentation; computer vision; clustering and artificial intelligence; pattern recognition and classification; applications of pattern recognition; and Chilean Workshop on Pattern Recognition.




Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications


Book Description

This book constitutes the refereed post-conference proceedings of the 23rd Iberoamerican Congress on Pattern Recognition, CIARP 2018, held in Madrid, Spain, in November 2018 The 112 papers presented were carefully reviewed and selected from 187 submissions The program was comprised of 6 oral sessions on the following topics: machine learning, computer vision, classification, biometrics and medical applications, and brain signals, and also on: text and character analysis, human interaction, and sentiment analysis




Computer Analysis of Images and Patterns


Book Description

The two volume set LNCS 8047 and 8048 constitutes the refereed proceedings of the 15th International Conference on Computer Analysis of Images and Patterns, CAIP 2013, held in York, UK, in August 2013. The 142 papers presented were carefully reviewed and selected from 243 submissions. The scope of the conference spans the following areas: 3D TV, biometrics, color and texture, document analysis, graph-based methods, image and video indexing and database retrieval, image and video processing, image-based modeling, kernel methods, medical imaging, mobile multimedia, model-based vision approaches, motion analysis, natural computation for digital imagery, segmentation and grouping, and shape representation and analysis.




Swarm Intelligence and Bio-Inspired Computation


Book Description

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.