Optional Processes


Book Description

It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.




Diffusions, Markov Processes, and Martingales


Book Description

The main themes of this book are stochastic integrals, stochastic differential equations, excursion theory and 'the general theory of processes'. Much effort has gone into the attempt to make these subjects accessible by providing many concrete examples illustrating techniques of calculation, and by treating all topics (including stochastic differential geometry) from the ground up, starting from the simplest case. In particular, the theory is developed first for the 'continuous' case, by far the most important in practice, while the general theory (and its applications) forms the last chapter. Many of the examples and many of the proofs are new and some important methods of calculation appear for the first time in a book.




An Introduction to the Theory of Point Processes


Book Description

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.




Séminaire de Probabilités XLVIII


Book Description

In addition to its further exploration of the subject of peacocks, introduced in recent Séminaires de Probabilités, this volume continues the series’ focus on current research themes in traditional topics such as stochastic calculus, filtrations and random matrices. Also included are some particularly interesting articles involving harmonic measures, random fields and loop soups. The featured contributors are Mathias Beiglböck, Martin Huesmann and Florian Stebegg, Nicolas Juillet, Gilles Pags, Dai Taguchi, Alexis Devulder, Mátyás Barczy and Peter Kern, I. Bailleul, Jürgen Angst and Camille Tardif, Nicolas Privault, Anita Behme, Alexander Lindner and Makoto Maejima, Cédric Lecouvey and Kilian Raschel, Christophe Profeta and Thomas Simon, O. Khorunzhiy and Songzi Li, Franck Maunoury, Stéphane Laurent, Anna Aksamit and Libo Li, David Applebaum, and Wendelin Werner.




Change Of Time And Change Of Measure (Second Edition)


Book Description

Change of Time and Change of Measure provides a comprehensive account of two topics that are of particular significance in both theoretical and applied stochastics: random change of time and change of probability law.Random change of time is key to understanding the nature of various stochastic processes, and gives rise to interesting mathematical results and insights of importance for the modeling and interpretation of empirically observed dynamic processes. Change of probability law is a technique for solving central questions in mathematical finance, and also has a considerable role in insurance mathematics, large deviation theory, and other fields.The book comprehensively collects and integrates results from a number of scattered sources in the literature and discusses the importance of the results relative to the existing literature, particularly with regard to mathematical finance.In this Second Edition a Chapter 13 entitled 'A Wider View' has been added. This outlines some of the developments that have taken place in the area of Change of Time and Change of Measure since the publication of the First Edition. Most of these developments have their root in the study of the Statistical Theory of Turbulence rather than in Financial Mathematics and Econometrics, and they form part of the new research area termed 'Ambit Stochastics'.




Stochastic Processes and Applications


Book Description

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.




Prices in Financial Markets


Book Description

This book offers a unified treatment of selected topics in the theory of financial markets. Starting with discrete time models, Dothan introduces discrete time stochastic calculus and discrete martingale methods of intuitive simplicity to characterize attainability, completeness, pricing, and the relationship between risk and return in financial markets. Subsequently, he uses the intuition developed in conjunction with the discrete time theory to introduce continuous time calculus for continuous, jump, and mixed continuous-jump processes, and to deal with attainability, completeness, pricing, and the relationship between risk and return in general continuous time models. Throughout, the exposition of the continuous time theory emphasizes the analogies between discrete time and continuous time methods and results. The book includes many examples, applications to the pricing of options and other derivative securities, and an extensive discussion of the Black-Scholes model and its most general theoretical extension.




Advances in Manufacturing Engineering


Book Description

Selected, peer reviewed papers from the Conference on Future Engineering, September 25-26, 2014, Korytnica, Poland




Indiana Pharmacist


Book Description




PDE and Martingale Methods in Option Pricing


Book Description

This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.