Quantum Dot Optoelectronic Devices


Book Description

This book captures cutting-edge research in semiconductor quantum dot devices, discussing preparation methods and properties, and providing a comprehensive overview of their optoelectronic applications. Quantum dots (QDs), with particle sizes in the nanometer range, have unique electronic and optical properties. They have the potential to open an avenue for next-generation optoelectronic methods and devices, such as lasers, biomarker assays, field effect transistors, LEDs, photodetectors, and solar concentrators. By bringing together leaders in the various application areas, this book is both a comprehensive introduction to different kinds of QDs with unique physical properties as well as their preparation routes, and a platform for knowledge sharing and dissemination of the latest advances in a novel area of nanotechnology.




Nanoscale Photonics and Optoelectronics


Book Description

The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.




Optoelectronics, Photonic Devices, and Optical Networks


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.




Colloidal Quantum Dot Optoelectronics and Photovoltaics


Book Description

Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.




The Wonder of Nanotechnology


Book Description

When you look closely, nature is nanotechnology at its finest. From a single cell, a factory all by itself, to complex systems, such as the nervous system or the human eye, each is composed of specialized nanostructures that exist to perform a specific function. This same beauty can be mirrored when we interact with the tiny physical world that is the realm of quantum mechanics. This book focuses on the application of nanotechnology to modern semiconductor optoelectronic devices. Electrons, photons, and even thermal properties can all be engineered at the nanolevel. The 2D quantum well, possibly the simplest aspect of nanotechnology, has dramatically enhanced the efficiency and versatility of electronic and optoelectronic devices. While this area alone is fascinating, nanotechnology has now progressed to 1D (quantum wire) and 0D (quantum dot) systems that exhibit remarkable and sometimes unexpected behaviors. With these components serving as the modern engineer's building blocks, it is a brave new world we live in, with endless possibilities for new technology and scientific discovery.




Self-Assembled Quantum Dots


Book Description

This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.




Single Quantum Dots


Book Description

Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.




Quantum Optics with Semiconductor Nanostructures


Book Description

An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students. - A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics - Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures - Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena




Optoelectronic Devices


Book Description

Tremendous progress has been made in the last few years in the growth, doping and processing technologies of the wide bandgap semiconductors. As a result, this class of materials now holds significant promis for semiconductor electronics in a broad range of applications. The principal driver for the current revival of interest in III-V Nitrides is their potential use in high power, high temperature, high frequency and optical devices resistant to radiation damage. This book provides a wide number of optoelectronic applications of III-V nitrides and covers the entire process from growth to devices and applications making it essential reading for those working in the semiconductors or microelectronics. Broad review of optoelectronic applications of III-V nitrides




Detection and Interaction of Single Quantum States


Book Description

This book highlights the findings and achievements in the major research plan “Detection and Interaction of Single Quantum States” funded by the National Natural Science Foundation of China (NSFC). The 8-year plan started in 2011 and consisted of 107 projects conducted by Chinese universities and research institutes. The book covers the plan's research background, achievements, and follow-up prospects. The plan aimed to tackle one of the major challenges for researchers worldwide—to establish precise detection and control of single quantum states in time, space, energy, and momentum. The plan integrated precise detection means with the ultrahigh resolution of time, space, and energy, under extreme conditions such as ultrahigh vacuum, ultralow temperature, high magnetic field, and ultrahigh pressure, using interdisciplinary research methods in physics, chemistry, informatics, and materials science. The book focuses on the exploration of new phenomena, theories, and concepts of single quantum states, describes new techniques and methods of single quantum states, and presents the purification and construction of single-quantum-state systems. It is a concise and valuable source of information for researchers in quantum science and graduate students interested in the research field.