Optoelectronic Integrated Circuit Design and Device Modeling


Book Description

In Optoelectronic Integrated Circuit Design and Device Modeling, Professor Jianjun Gao introduces the fundamentals and modeling techniques of optoelectronic devices used in high-speed optical transmission systems. Gao covers electronic circuit elements such as FET, HBT, MOSFET, as well as design techniques for advanced optical transmitter and receiver front-end circuits. The book includes an overview of optical communication systems and computer-aided optoelectronic IC design before going over the basic concept of laser diodes. This is followed by modeling and parameter extraction techniques of lasers and photodiodes. Gao covers high-speed electronic semiconductor devices, optical transmitter design, and optical receiver design in the final three chapters. Addresses a gap within the rapidly growing area of transmitter and receiver modeling in OEICs Explains diode physics before device modeling, helping readers understand their equivalent circuit models Provides comprehensive explanations for E/O and O/E conversions done with laser and photodiodes Covers an extensive range of devices for high-speed applications Accessible for students new to microwaves Presentation slides available for instructor use This book is primarily aimed at practicing engineers, researchers, and post-graduates in the areas of RF, microwaves, IC design, photonics and lasers, and solid state devices. The book is also a strong supplement for senior undergraduates taking courses in RF and microwaves. Lecture materials for instructors available at www.wiley.com/go/gao




Optoelectronic Circuits in Nanometer CMOS Technology


Book Description

This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical sensors.




Heterojunction Bipolar Transistors for Circuit Design


Book Description

A highly comprehensive summary on circuit related modeling techniques and parameter extraction methods for heterojunction bipolar transistors Heterojunction Bipolar Transistor (HBT) is one of the most important devices for microwave applications. The book details the accurate device modeling for HBTs and high level IC design using HBTs Provides a valuable reference to basic modeling issues and specific semiconductor device models encountered in circuit simulators, with a thorough reference list at the end of each chapter for onward learning Offers an overview on modeling techniques and parameter extraction methods for heterojunction bipolar transistors focusing on circuit simulation and design Presents electrical/RF engineering-related theory and tools and include equivalent circuits and their matrix descriptions, noise, small and large signal analysis methods




Modeling And Parameter Extraction Techniques Of Silicon-based Radio Frequency Devices


Book Description

This comprehensive compendium describes the basic modeling techniques for silicon-based semiconductor devices, introduces the basic concepts of silicon-based passive and active devices, and provides its state-of-the-art modeling and equivalent circuit parameter extraction methods.The unique reference text benefits practicing engineers, technicians, senior undergraduate and first-year graduate students working in the areas of RF, microwave and solid-state device, and integrated circuit design.




Compound Semiconductor Device Modelling


Book Description

Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.




Resonant Tunneling Diode Photonics


Book Description

This book brings together two broad themes that have generated a great deal of interest and excitement in the scientific and technical community in the last 100 years or so: quantum tunnelling and nonlinear dynamical systems. It applies these themes to nanostructured solid state heterostructures operating at room temperature to gain insight into novel photonic devices, systems and applications.




Optoelectronic Devices


Book Description

Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.




Silicon Optoelectronic Integrated Circuits


Book Description

Explains the circuit design of silicon optoelectronic integrated circuits (OEICs), which are central to advances in wireless and wired telecommunications. The essential features of optical absorption are summarized, as is the device physics of photodetectors and their integration in modern bipolar, CMOS, and BiCMOS technologies. This information provides the basis for understanding the underlying mechanisms of the OEICs described in the main part of the book. In order to cover the topic comprehensively, Silicon Optoelectronic Integrated Circuits presents detailed descriptions of many OEICs for a wide variety of applications from various optical sensors, smart sensors, 3D-cameras, and optical storage systems (DVD) to fiber receivers in deep-sub-μm CMOS. Numerous detailed illustrations help to elucidate the material.




Integrated Optoelectronics


Book Description

Integrated optoelectronics is becoming ever more important to communications, computer, and consumer industries. It is the enabling technology in a variety of systems, ranging from low-cost, robust optical componentsin consumer electronics to high-performance broadband information networks capable of supporting video and multimedia conferencing. The requirements for producing low-cost, highly reliable components for deployment in these new systems have created a technology challenge. Integrated optoelectronics promises to meet the performance and cost objectives of these applications by integrating both optical and electronic components in a highly functional chip. This book provides an overview of this exciting newtechnology.Integrated Optoelectronics brings together a group of acknowledged experts from both universities and industry around the world to focus on a common theme of integration. These experts have reported not only on the state-of-the-art, but also on the physics and design experience that goes into implementing integrated chips and modules. This book is a cohesive series of articles that includes a discussion of the intimate trade-offs between materials, processes, devices, functional blocks, packaging,and systems requirements in a truly integrated technology. This integration encompasses electrical, optoelectronic, and optical devices onto monolithic or hybrid chips, and into multichip modules.This volume surveys state-of-the-art research activities in integrated optoelectronics and gathers most of the important references into a single place. It outlines the major issues involved in integrating both optical and electronic components, provides an overview of design and fabrication concepts, and discusses the issues involved in bringing these new chips to the marketplace.This exciting new book:Provides a broad overview of the optoelectronic field, including materials processing, devices, and systems applicationsFeatures authors who are acknowledged research experts in this field, from both industry and universities around the worldIncludes new information on device fabrication, including the latest epitaxial growth and lift-off techniques to permit the mixing of dissimilar materials onto single chipsCovers planar processed laser fabrication leading to wafer level automated testingDiscusses optimization of devices for integration, including a detailed treatment of the vertical emitting laser and theoretical and experimental coverage of optimization of photodetectors for integration into receiver chipsDescribes design approaches for multifunctional chips, including photonic circuits for all-optical networks and the design of integrated optoelectronic chips with lasers, photodiodes, and electronic ICsCovers the infrastructure needed to support an integrated technology, including automated design systems which treat both optical and electrical circuits, and multichip packaging approaches for both optical and IC chips




Program Solicitation


Book Description