Optoelectronic Nanodevices


Book Description

During the last decade, novel graphene related materials (GRMs), perovskites, as well as metal oxides and other metal nanostructures have received the interest of the scientific community. Due to their extraordinary physical, optical, thermal, and electrical properties, which are correlated with their 2D ultrathin atomic layer structure, large interlayer distance, ease of functionalization, and bandgap tunability, these nanomaterials have been applied in the development or the improvement of innovative optoelectronic applications, as well as the expansion of theoretical studies and simulations in the fast-growing fields of energy (photovoltaics, energy storage, fuel cells, hydrogen storage, catalysis, etc.), electronics, photonics, spintronics, and sensing devices. The continuous nanostructure-based applications development has provided the ability to significantly improve existing products and to explore the design of materials and devices with novel functionalities. This book demonstrates some of the most recent trends and advances in the interdisciplinary field of optoelectronics. Most articles focus on light emitting diodes (LEDs) and solar cells (SCs), including organic, inorganic, and hybrid configurations, whereas the rest address photodetectors, transistors, and other well-known dynamic optoelectronic devices. In this context, this exceptional collection of articles is directed at a broad scientific audience of chemists, materials scientists, physicists, and engineers, with the goals of highlighting the potential of innovative optoelectronic applications incorporating nanostructures and inspiring their realization.




High-Performance Carbon-Based Optoelectronic Nanodevices


Book Description

This book focuses on the photoelectric nanodevices based on carbon nanostructures, such as carbon nanotubes, graphene and related heterojunctions. The synthesis of carbon nanostructures and device fabrication are simply given. The interface charge transfer and the performance enhancement in the photodetectors and solar cells are comprehensively introduced. Importantly, carbon allotropes behave as high-mobility conductors or bandgap-tunable semiconductors depending on the atomic arrangements, the direct motivation is to fabricate all-carbon nanodevices using these carbon nanomaterials as building blocks. The photoelectric nanodevices based on all-carbon nanostructures have increasingly attracted attention in the future. The book offers a valuable reference guide to carbon-based photoelectric devices for researchers and graduate school students in the field. It will also benefit all researchers who investigate photoelectric nanodevices and photoelectric conversion with relevant frontier theories and concepts.




Nano Optoelectronic Sensors and Devices


Book Description

Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy. - Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies - Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis) - Explores key application areas such as sensing, electronics and solar energy




Nano Optoelectronic Sensors and Devices


Book Description

Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy. Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis) Explores key application areas such as sensing, electronics and solar energy




Semiconductor Nanostructures for Optoelectronic Devices


Book Description

This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.




Advances in Nanotechnology Research and Application: 2011 Edition


Book Description

Advances in Nanotechnology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Leading Edge Nanotechnology Research Developments


Book Description

Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometer is a billionth of a meter, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book present simportant breakthroughs in the field from around the world.




Nanotechnology Research


Book Description

Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometer is a billionth of a meter, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book presents new and important breakthroughs in the field from around the world.




Quantum Nano-Plasmonics


Book Description

With examples throughout, this step-by-step approach makes quantum theory of plasmons accessible to readers without specialized training in theory.




Applications of Nanomaterials in Energy Storage and Electronics


Book Description

This volume describes recent advancements in the synthesis and applications of nanomaterials for energy harvesting and storage, and optoelectronics technology for next-generation devices. This book consists of 15 chapters that cover a range of nanomaterials and the corresponding technologies. The initial chapters summarize the recent progress in applications of nanomaterials like carbon nanotubes, metal oxides, and graphene oxides-based hybrids in solar energy harvesting using recent photovoltaic technologies. These chapters are followed by reviews on nanowires, graphene quantum dots, boron nitrides, carbon nano onions and metal organic frameworks leading to the fabrication of supercapacitors, bio-sensors, lithium-ion batteries and hydrogen storage applications. The final set of chapters cover the next generation fuel cells using polymer nanocomposites, ferroelectric liquid crystal nanocomposite and optoelectronic nanomaterials for optical memory and displays devices. Key Features: Describes the types of nanomaterials that are fundamental to energy storage and electronic systems. These materials include nanowires, graphene quantum dots, boron nitrides, carbon nano onions and metal organic frameworks (MOFs), Covers the processes for nanomaterial synthesis Reviews important photovoltaics applications of nanomaterials, including their use in energy storage, batteries and optoelectronic devices Discusses the application of nanomaterials in electronics for sensing, bioelectronics, memory, nanocomposites for fuel cells, ferroelectric liquid crystal nanocomposites and optoelectronic nanomaterials for optical memory and displays Provides references for further reading in every chapter The volume informs engineers, academic researchers, research scholars and graduate students working in the area of nanomaterials for energy generation, storage and optoelectronics.