Orbital Approach to the Electronic Structure of Solids


Book Description

This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understanding properties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to either understand the results of quantitative calculations or to rationalize experimental observations. Extensive use of the orbital interaction approach appears to be a very efficient way of building bridges between physically and chemically based notions to understand the structure and properties of solids.




Orbital Approach to the Electronic Structure of Solids


Book Description

This book is aiming at filling the gap between the different languages of the physics and chemistry communities to understand the electronic structure of solids. How structure and properties of solids are related is illustrated by considering in detail a large number of real examples.




Electronic Structure and the Properties of Solids


Book Description

This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.




Solids and Surfaces


Book Description

Dieses einzigartige Buch läßt Chemie und Physik im festen Zustand und auf Oberflächen 'zusammentreffen'. In einer lebhaften und anschaulichen Weise bringt es Chemikern die Sprache bei, mit der sie die Elektronenstruktur ausgedehnter Systeme verstehen lernen können. Gleichzeitig zeigt es, wie auch von Seiten der Chemie Modelle über den festen Zustand sowie über Bindungen und Reaktivität von Oberflächen erstellt werden können. Das Buch bedient sich zunächst der Sprache von Kristallorbitalen, Bandstrukturen und Zustandsdichten. Danach stellt es die Werkzeuge bereit, mit denen der Leser weg von den stark delokalisierten Orbitalen des Festkörpers gelangt, darunter der Zerfall von Zustandsdichten und die Population von Kristallorbital-Overlaps. Mit diesen Werkzeugen schafft es der Autor, detaillierte quantenmechanische Berechnungen mit der chemischen Betrachtungsweise mit Grenzorbitalen zu verknüpfen. Die beschriebenen Anwendungen umfassen eine allgemeine Vorstellung der Chemisorption, Bindungsbildung und -zerfall im festen Zustand, Bindungen im Metall, die Elektronenstruktur ausgewählter leitender und supraleitender Verbindungen sowie die für die Deformation ausgedehnter Systeme verantwortlichen Kräfte.




Frontier Orbitals and Reaction Paths


Book Description

A collection of selected papers on the Frontier Orbital Theory, with introductory notes. It provides the basic concept and formulation of the theory, and the physical and chemical significance of the frontier orbital interactions in chemistry, together with many practical applications. The formulation of the Intrinsic Reaction Coordinate and applications to some simple systems are also presented. The aim of this volume is to show by what forces chemical reactions are driven and to demonstrate how the regio- and stereo-selectivities are determined in chemical reactions. Students and senior investigators will gain insight into the nature of chemical reactions and find out how quantum chemical calculations are connected with chemical intuition.




Chemistry 2e


Book Description

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.




Berry Phases in Electronic Structure Theory


Book Description

Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.




Electronic Structure of Alloys, Surfaces and Clusters


Book Description

Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, surfaces and clusters. Understanding the electronic structure of these systems is fundamental not only for the basic science, but also constitutes a very important step in various technological aspects, such as tuning their stabilities, chemical and catalytic reactivities and magnetism. Expert practitioners give an up-to-date account of the field with enough detailed background so that even a newcomer can follow the development. The theoretical framework is discussed in addition to the present status of knowledge in the field. Electronic Structure of Alloys, Surfaces and Clusters also includes an extensive bibliography which provides a comprehensive reading list of work on the topic.




Elementary Electronic Structure


Book Description

This is a revised edition of the 1999 text on the electronic structure and properties of solids, similar in spirit to the well-known 1980 text Electronic Structure and the Properties of Solids. The revisions include an added chapter on glasses, and rewritten sections on spin-orbit coupling, magnetic alloys, and actinides. The text covers covalent semiconductors, ionic insulators, simple metals, and transition-metal and f-shell-metal systems. It focuses on the most important aspects of each system, making what approximations are necessary in order to proceed analytically and obtain formulae for the properties. Such back-of-the-envelope formulae, which display the dependence of any property on the parameters of the system, are characteristic of Harrison's approach to electronic structure, as is his simple presentation and his provision of all the needed parameters.In spite of the diversity of systems and materials, the approach is systematic and coherent, combining the tight-binding (or atomic) picture with the pseudopotential (or free-electron) picture. This provides parameters ? the empty-core radii as well as the covalent energies ? and conceptual bases for estimating the various properties of all these systems. Extensive tables of parameters and properties are included.The book has been written as a text, with problems at the end of each chapter, and others can readily be generated by asking for estimates of different properties, or different materials, than those treated in the text. In fact, the ease of generating interesting problems reflects the extraordinary utility and simplicity of the methods introduced. Developments since the 1980 publication have made the theory simpler and much more accurate, besides allowing much wider application.




Condensed Matter Physics in the Prime of the 21st Century


Book Description

This is a collection of lectures by 11 active researchers, renowned specialists in a number of modern, promising, dynamically-developing research directions in condensed matter/solid state theory. The lectures are concerned with phenomena, materials and ideas, discussing theoretical and experimental features, as well as with methods of calculation.Readers will find up-to-date presentations of the methods of carrying out efficient calculations for electronic systems and quantum spin systems, together with applications to describe phenomena and to design new materials. These applications include systems of quantum dots, quantum gates, semiconductor materials for spintronics, and the unusual characteristics of warm dense matter.