Ordered Exponential Fields


Book Description

Model theoretic algebra has witnessed remarkable progress in the last few years. It has found profound applications in other areas of mathematics, notably in algebraic geometry and in singularity theory. Since Wilkie's results on the o-minimality of the expansion of the reals by the exponential function, and most recently even by all Pfaffian functions, the study of o-minimal expansions of the reals has become a fascinating topic. The quest for analogies between the semi-algebraic case and the o-minimal case has set a direction to this research. Through the Artin-Schreier Theory of real closed fields, the structure of the non-archimedean models in the semi-algebraic case is well understood. For the o-minimal case, so far there has been no systematic study of the non-archimedean models. The goal of this monograph is to serve this purpose. The author presents a detailed description of the non-archimedean models of the elementary theory of certain o-minimal expansions of the reals in which the exponential function is definable. The example of exponential Hardy fields is worked out with particular emphasis. The basic tool is valuation theory, and a sufficient amount of background material on orderings and valuations is presented for the convenience of the reader.




The Classical Fields


Book Description

The real, rational, complex and p-adic numbers are discussed in detail in this comprehensive work.




The History of Continua


Book Description

Mathematical and philosophical thought about continuity has changed considerably over the ages, from Aristotle's insistence that a continuum is a unified whole, to the dominant account today, that a continuum is composed of infinitely many points. This book explores the key ideas and debates concerning continuity over more than 2500 years.




Applied Differential Geometry


Book Description

Introduction -- Technical preliminaries: tensors, actions and functors -- Applied manifold geometry -- Applied bundle geometry -- Applied jet geometry -- Geometrical path integrals and their applications




Abelian Group Theory and Related Topics


Book Description

This volume contains the proceedings of a conference on abelian groups held in August 1993 at Oberwolfach. The conference brought together forty-seven participants from all over the world and from a range of mathematical areas. Experts from model theory, set theory, noncommutative groups, module theory, and computer science discussed problems in their fields that relate to abelian group theory. This book provides a window on the frontier of this active area of research.




Asymptotic Differential Algebra and Model Theory of Transseries


Book Description

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.




Ordered Algebraic Structures and Related Topics


Book Description

Contains the proceedings of the international conference "Ordered Algebraic Structures and Related Topics", held in October 2015, at CIRM, Luminy, Marseilles. Papers cover topics in real analytic geometry, real algebra, and real algebraic geometry including complexity issues, model theory of various algebraic and differential structures, Witt equivalence of fields, and the moment problem.




Abelian Groups and Modules


Book Description

On the 26th of November 1992 the organizing committee gathered together, at Luigi Salce's invitation, for the first time. The tradition of abelian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative rings have become so specialized in the last years that it looked really ambitious to fit them into only one meeting. Anyway, since everyone of us shared the same mathematical roots, we did want to emphasize a common link. So we elaborated the long symposium schedule: three days of abelian groups and three days of modules over non commutative rings with a two days' bridge of commutative algebra in between. Many of the most famous names in these fields took part to the meeting. Over 140 participants, both attending and contributing the 18 Main Lectures and 64 Communications (see list on page xv) provided a really wide audience for an Algebra meeting. Now that the meeting is over, we can say that our initial feeling was right.




Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)


Book Description

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.




Quantum Field Theory: A Tourist Guide for Mathematicians


Book Description

Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.