Holographic Materials and Applications


Book Description

Optical techniques continue to evolve and advance, particularly with the inventions of the laser and holography. This volume provides an introduction to various optical systems and devices that are increasingly being used for engineering, scientific, and industrial applications. Organized into three sections on Holographic Materials, Optical Systems, and Algorithms and Imaging Processing, this book covers basic concepts of holographic materials and systems. Chapters provide comprehensive information on volume holograms, display holograms, full-color holographic optical elements, computer-generated holograms, digital imaging devices, and image processing algorithms. This volume is intended for researchers in the field and interested readers alike.




Holograms


Book Description

Holograms - Recording Materials and Applications covers recent advances in the development of a broad range of holographic recording materials including ionic liquids in photopolymerisable materials, azo-dye containing materials, porous glass and polymer composites, amorphous chalcogenide films, Norland optical adhesive as holographic recording material and organic photochromic materials. In depth analysis of collinear holographic data storage and polychromatic reconstruction for volume holographic memory are included. Novel holographic devices, as well as application of holograms in security and signal processing are covered. Each chapter provides a comprehensive introduction to a specific topic, with a survey of developments to date.




Holographic Materials and Optical Systems


Book Description

Holographic Materials and Optical Systems covers recent research achievements in the areas of volume holographic optical elements and systems, development of functionalized holographic recording materials, and applications in holographic imaging and metrology. Designs of single and multiplexed volume holographic optical elements for laser beam shaping, combining, and redirection are covered, and their properties are studied theoretically and experimentally. The high impact of holography in imaging and metrology is demonstrated by applications spreading from thickness and surface measurements, through antenna metrology and analyzing high-density gradients in fluid mechanics to characterization of live objects in clinical diagnostics. Novel functionalized materials used in dynamic or permanent holographic recording cover photopolymers, photochromics, photo-thermo-refractive glasses, and hybrid organic-inorganic media.







Introduction to Organic Electronic and Optoelectronic Materials and Devices


Book Description

Reflecting rapid growth in research and development on organic/polymeric electronic and photonic materials and devices, Introduction to Organic Electronic and Optoelectronic Materials and Devices provides comprehensive coverage of the state-of-the-art in an accessible format. The book presents fundamentals, principles, and mechanisms complem




Optical Properties of Functional Polymers and Nano Engineering Applications


Book Description

This comprehensive text provides a basic introduction to the optical properties of polymers, as well as a systematic overview of the latest developments in their nano engineering applications—including L-GRIN lenses, 3D holographic displays, optical gene detection, and more. Covering an increasingly important class of materials relevant not only in academic research but also in industry, this book emphasizes the importance of nano engineering in improving the fundamental optical properties of the functional polymers, elaborating on high-level research while thoroughly explaining the underlying principles.




Holography


Book Description

This self-contained treatment of the principles, techniques, and applications of holography examines theory and practice, image analysis, specialized techniques, and a range of applications of both analog and digital holographic methods. The author, an esteemed professor in the field, describes the nature of holographic and lithographic diffraction gratings and the tools necessary for their design and analysis. Suitable for researchers and graduate students in physics and optics, the book includes exercise problems to enhance understanding. Features Offers a systematic, rigorous account of the principles, techniques, and applications of holography Draws on the experience and lectures of a well-known author and professor in the field Presents the theory and applications of both analog and digital holographic methods Includes exercise problems




Photorefractive Organic Materials and Applications


Book Description

This book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.




Organic Optoelectronic Materials


Book Description

This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.




Holographic Sensors


Book Description

This thesis presents a theoretical and experimental approach for the rapid fabrication, optimization and testing of holographic sensors for the quantification of pH, organic solvents, metal cations, and glucose in solutions. Developing non-invasive and reusable diagnostics sensors that can be easily manufactured will support the monitoring of high-risk individuals in any clinical or point-of-care setting. Sensor fabrication approaches outlined include silver-halide chemistry, laser ablation and photopolymerization. The sensors employ off-axis Bragg diffraction gratings of ordered silver nanoparticles and localized refractive index changes in poly (2-hydroxyethyl methacrylate) and polyacrylamide films. The sensors exhibited reversible Bragg peak shifts, and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 495-1100 nm. Clinical trials of glucose sensors in the urine samples of diabetic patients demonstrated that they offer superior performance compared to commercial high-throughput urinalysis devices. Lastly, a generic smartphone application to quantify colorimetric tests was developed and tested for both Android and iOS operating systems. The sensing platform and smartphone application may have implications for the development of low-cost, reusable and equipment-free point-of-care diagnostic devices.