Handbook of Organic Materials for Electronic and Photonic Devices


Book Description

Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. - Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials - Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices - New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication




Liquid Crystals With Nano And Microparticles (In 2 Volumes)


Book Description

'The overall book content is excellently coordinated to form a synchronised story, interesting to a broad scientific audience … The book summarises the present knowledge in the field, introduces fundamental concepts to the beginners, describes key measuring methods and presents several different typical demonstrative systems, some of them exhibiting an extraordinary rich spectrum of structures and superstructures. I am sure that with time the book will become an attractor to a broad audience (physicists, chemists, material scientists, engineers, etc.), ranging from students, beginners in the field to experienced researchers. To summarise, this is the book that I have been missing on my bookshelf.'Liquid Crystals TodayWhile liquid crystals are today widely known for their successful application in flat panel displays (LCDs), academic liquid crystal research is more and more targeting situations where these anisotropic fluids are put to completely different use, in varying contexts. A particularly strong focus is on colloidal liquid crystals, where particles, bubbles or drops are dispersed in a liquid crystal phase. The liquid crystal can act as a host phase, with the inclusions constituting foreign guests that disturb the local order in interesting ways, often resulting in large-scale positional arrangement and/or uniform alignment of the guests. But it may also be formed by solid particles themselves, if these are of nanoscale dimensions and of disc- or rod-shape, and if they are suspended in an isotropic liquid host at sufficient concentration.This book aims to cover both the modern research tracks, gathering pioneering researchers of the different subfields to give a concise overview of the basis as well as the prospects of their respective specialties. The scope spans from curiosity-driven fundamental scientific research to applied sciences. Over the course of the next decade, the former is likely to generate new tracks of the latter type, considering the exploratory and productive phase of this young research field.




Handbook of Organic Materials for Optical and (Opto)Electronic Devices


Book Description

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists







Organic Light-Emitting Materials and Devices


Book Description

New advances offer flexible, low-cost fabrication methods for light-emitting materials, particularly in display technologies. As researchers continue to develop novel applications for these materials, feasible solutions for large-scale manufacturing are increasingly important. Organic Light-Emitting Materials and Devices covers all aspects o




Organic Electro-Optics and Photonics


Book Description

Definitive guide to modern organic electro-optic and photonic technologies, from basic theoretical concepts to practical applications in devices and systems.







Photonic Devices


Book Description

Photonic devices lie at the heart of the communications revolution, and have become a large and important part of the electronic engineering field, so much so that many colleges now treat this as a subject in its own right. With this in mind, the author has put together a unique textbook covering every major photonic device, and striking a careful balance between theoretical and practical concepts. The book assumes a basic knowledge of optics, semiconductors and electromagnetic waves. Many of the key background concepts are reviewed in the first chapter. Devices covered include optical fibers, couplers, electro-optic devices, magneto-optic devices, lasers and photodetectors. Problems are included at the end of each chapter and a solutions set is available. The book is ideal for senior undergraduate and graduate courses, but being device driven it is also an excellent engineers' reference.