Oscillation Rising


Book Description

Forced to flee the one place Dixie thought was going to be her refuge, she sets out to reunite with her lost allies. An ongoing reign of shockwaves continues to devastate the nation, causing an electrically enclosed community, Oscillation, to rise as a haven of hope to remaining survivors. Determined to uncover the secrets of her past, Dixie now pursues Oscillation with her small group of companions, discovering more secrets to add to her ongoing hunt for the truth. Will Dixie find the answers she seeks? Or, will more mysteries be unleashed surrounding her family and the future of the nation's existence?




El Niño Southern Oscillation in a Changing Climate


Book Description

Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.







Terrestrial Magnetism


Book Description




Nature


Book Description




Applied Asymptotic Methods in Nonlinear Oscillations


Book Description

Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.










The Question of Spontaneous Wing Oscillations


Book Description

Determination of the spontaneous oscillations of a wing or tail unit entail many difficulties, both the mathematical determination and the determination by static wing oscillation tests being far from successful and flight tests involving very great risks. The present paper gives a method developed at the Junkers Airplane Company by which the critical velocity with respect to spontaneous oscillations of increasing amplitude can be ascertained in flight tests without undue risks, the oscillation of the surface being obtained in the tests by the application of an external force.