Oscillatory Integrals and Phenomena Beyond all Algebraic Orders


Book Description

During the last two decades, in several branches of science (water waves, crystal growth, travelling waves in one dimensional lattices, splitting of separatrices,...) different problems appeared in which the key point is the computation of exponentially small terms. This self-contained monograph gives new and rigorous mathematical tools which enable a systematic study of such problems. Starting with elementary illuminating examples, the book contains (i) new asymptotical tools for obtaining exponentially small equivalents of oscillatory integrals involving solutions of nonlinear differential equations; (ii) implementation of these tools for solving old open problems of bifurcation theory such as existence of homoclinic connections near resonances in reversible systems.




Peyresq Lectures In Nonlinear Phenomena


Book Description

Nonlinear science has a very broad scope and the aim of this volume of lectures is to introduce different aspects of this vast domain to research students whose studies are necessarily concentrated on only one. The lectures given at summer schools in France between 1997 and 1999, describe analytical, geometrical and experimental approaches to subjects as diverse as turbulence, elasticity, physiology, classical mechanics, quantum chaos, water waves and the laser cooling of atoms.




Nonlinear Higher Order Differential And Integral Coupled Systems: Impulsive And Integral Equations On Bounded And Unbounded Domains


Book Description

Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Carathéodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.







Solitary Waves in Fluids


Book Description

Edited by R.H.J. Grimshaw, this book covers the topic of solitary waves in fluids.




Solving Transcendental Equations


Book Description

Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute?not always needed, but indispensable when it is. The author?s goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations. Solving Transcendental Equations is unique in that it is the first book to describe the Chebyshev-proxy rootfinder, which is the most reliable way to find all zeros of a smooth function on the interval, and the very reliable spectrally enhanced Weyl bisection/marching triangles method for bivariate rootfinding, and it includes three chapters on analytical methods?explicit solutions, regular pertubation expansions, and singular perturbation series (including hyperasymptotics)?unlike other books that give only numerical algorithms for solving algebraic and transcendental equations. This book is written for specialists in numerical analysis and will also appeal to mathematicians in general. It can be used for introductory and advanced numerical analysis classes, and as a reference for engineers and others working with difficult equations.




The Fermi-Pasta-Ulam Problem


Book Description

This volume reviews the current understanding of the Fermi-Pasta-Ulam (FPU) Problem without trying to force coherence on differing perspectives on the same problem by various groups or approaches. The contributions lead the interested but inexperienced reader through gradual understanding, starting from general analysis and proceeding towards more specialized topics. The volume also includes a reprint of the original Fermi-Pasta-Ulam paper.




Handbook of Mathematical Fluid Dynamics


Book Description

The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.




Radially Symmetric Patterns of Reaction-Diffusion Systems


Book Description

Includes a paper that studies bifurcations of stationary and time-periodic solutions to reaction-diffusion systems. This title develops a center-manifold and normal form theory for radial dynamics which allows for a complete description of radially symmetric patterns.




PDE Dynamics


Book Description

This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.