Outrigger Design for High-Rise Buildings


Book Description

Outrigger systems are rigid horizontal structures designed to improve a building’s stability and strength by connecting the building core or spine to distant columns, much in the way an outrigger can prevent a canoe from overturning. Outriggers have been used in tall, narrow buildings for nearly 500 years, but the basic design principle dates back centuries. In the 1980s, as buildings grew taller and more ambitious, outrigger systems eclipsed tubular frames as the most popular structural approach for supertall buildings. Designers embraced properly proportioned core-and-outrigger schemes as a method to offer far more perimeter flexibility and openness for tall buildings than the perimeter moment or braced frames and bundled tubes that preceded them. However, the outrigger system is not listed as a seismic lateral load-resisting system in any code, and design parameters are not available, despite the increasingly frequent use of the concept. The Council on Tall Buildings and Urban Habitat’s Outrigger Working Group has addressed the pressing need for design guidelines for outrigger systems with this guide, a comprehensive overview of the use of outriggers in skyscrapers. This guide offers detailed recommendations for analysis of outriggers within the lateral load-resisting systems of tall buildings, for recognizing and addressing effects on building behavior and for practical design solutions. It also highlights concerns specific to the outrigger structural system such as differential column shortening and construction sequence impacts. Several project examples are explored in depth, illustrating the role of outrigger systems in tall building designs and providing ideas for future projects. The guide details the impact of outrigger systems on tall building designs, and demonstrates ways in which the technology is continuously advancing to improve the efficiency and stability of tall buildings around the world.




Designing Tall Buildings


Book Description

The first of its kind, Designing Tall Buildings is an accessible reference that guides you through the fundamental principles of designing high-rises. Each chapter focuses on one theme central to tall-building design, giving you a comprehensive overview of the related architecture and structural engineering concepts. Mark P. Sarkisian provides clear definitions of technical terms and introduces important equations, to help you gradually develop your knowledge. Later chapters allow you to explore more complex applications, such as biomimicry. Projects drawn from Skidmore, Owings and Merrill’s vast catalog of built high-rises, many of which Sarkisian designed, demonstrate these concepts. This book advises you to consider the influence of a particular site’s geology, wind conditions, and seismicity. Using this contextual knowledge and analysis, you can determine what types of structural solutions are best suited for a tower on that site. You can then conceptualize and devise efficient structural systems that are not only safe, but also constructible and economical. Sarkisian also addresses the influence of nature in design, urging you to integrate structure and architecture for buildings of superior performance, sustainability, and aesthetic excellence.




Building the Skyline


Book Description

The Manhattan skyline is one of the great wonders of the modern world. But how and why did it form? Much has been written about the city's architecture and its general history, but little work has explored the economic forces that created the skyline. In Building the Skyline, Jason Barr chronicles the economic history of the Manhattan skyline. In the process, he debunks some widely held misconceptions about the city's history. Starting with Manhattan's natural and geological history, Barr moves on to how these formations influenced early land use and the development of neighborhoods, including the dense tenement neighborhoods of Five Points and the Lower East Side, and how these early decisions eventually impacted the location of skyscrapers built during the Skyscraper Revolution at the end of the 19th century. Barr then explores the economic history of skyscrapers and the skyline, investigating the reasons for their heights, frequencies, locations, and shapes. He discusses why skyscrapers emerged downtown and why they appeared three miles to the north in midtown-but not in between the two areas. Contrary to popular belief, this was not due to the depths of Manhattan's bedrock, nor the presence of Grand Central Station. Rather, midtown's emergence was a response to the economic and demographic forces that were taking place north of 14th Street after the Civil War. Building the Skyline also presents the first rigorous investigation of the causes of the building boom during the Roaring Twenties. Contrary to conventional wisdom, the boom was largely a rational response to the economic growth of the nation and city. The last chapter investigates the value of Manhattan Island and the relationship between skyscrapers and land prices. Finally, an Epilogue offers policy recommendations for a resilient and robust future skyline.




Design and Analysis of Tall and Complex Structures


Book Description

The design of tall buildings and complex structures involves challenging activities, including: scheme design, modelling, structural analysis and detailed design. This book provides structural designers with a systematic approach to anticipate and solve issues for tall buildings and complex structures. This book begins with a clear and rigorous exposition of theories behind designing tall buildings. After this is an explanation of basic issues encountered in the design process. This is followed by chapters concerning the design and analysis of tall building with different lateral stability systems, such as MRF, shear wall, core, outrigger, bracing, tube system, diagrid system and mega frame. The final three chapters explain the design principles and analysis methods for complex and special structures. With this book, researchers and designers will find a valuable reference on topics such as tall building systems, structure with complex geometry, Tensegrity structures, membrane structures and offshore structures. - Numerous worked-through examples of existing prestigious projects around the world (such as Jeddah Tower, Shanghai Tower, and Petronas Tower etc.) are provided to assist the reader's understanding of the topic - Provides the latest modelling methods in design such as BIM and Parametric Modelling technique - Detailed explanations of widely used programs in current design practice, such as SAP2000, ETABS, ANSYS, and Rhino - Modelling case studies for all types of tall buildings and complex structures, such as: Buttressed Core system, diagrid system, Tube system, Tensile structures and offshore structures etc.




Recent Developments in Sustainable Infrastructure


Book Description

This book comprises select peer-reviewed proceedings of the International Conference on Recent Developments in Sustainable Infrastructure (ICRDSI) 2019. The topics span over all major disciplines of civil engineering with regard to sustainable development of infrastructure and innovation in construction materials, especially concrete. The book covers numerical and analytical studies on various topics such as composite and sandwiched structures, green building, groundwater modeling, rainwater harvesting, soil dynamics, seismic resistance and control of structures, waste management, structural health monitoring, and geo-environmental engineering. This book will be useful for students, researchers and professionals working in sustainable technologies in civil engineering.




Tall Building Structures


Book Description

Examines structural aspects of high rise buildings, particularly fundamental approaches to the analysis of the behavior of different forms of building structures including frame, shear wall, tubular, core and outrigger-braced systems. Introductory chapters discuss the forces to which the structure is subjected, design criteria which are of the greatest relevance to tall buildings, and various structural forms which have developed over the years since the first skyscrapers were built at the turn of the century. A major chapter is devoted to the modeling of real structures for both preliminary and final analyses. Considerable attention is devoted to the assessment of the stability of the structure, and the significance of creep and shrinkage is discussed. A final chapter is devoted to the dynamic response of structures subjected to wind and earthquake forces. Includes both accurate computer-based and approximate methods of analysis.




Structural Analysis and Design of Tall Buildings


Book Description

As software skills rise to the forefront of design concerns, the art of structural conceptualization is often minimized. Structural engineering, however, requires the marriage of artistic and intuitive designs with mathematical accuracy and detail. Computer analysis works to solidify and extend the creative idea or concept that might have started o




Reinforced Concrete Design of Tall Buildings


Book Description

An exploration of the world of concrete as it applies to the construction of buildings, Reinforced Concrete Design of Tall Buildings provides a practical perspective on all aspects of reinforced concrete used in the design of structures, with particular focus on tall and ultra-tall buildings. Written by Dr. Bungale S. Taranath, this work explains t




EASEC16


Book Description

This book presents articles from The 16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019, held in Brisbane, Australia. It provides a forum for professional engineers, academics, researchers and contractors to present recent research and developments in structural engineering and construction.​




Tall Buildings


Book Description

The structural challenges of building 800 metres into the sky are substantial, and include several factors which do not affect low-rise construction. This book focusses on these areas specifically to provide the architectural and structural knowledge which must be taken into account in order to design tall buildings successfully. In presenting examples of steel, reinforced concrete, and composite structural systems for such buildings, it is shown that wind load has a very important effect on the architectural and structural design. The aerodynamic approach to tall buildings is considered in this context, as is earthquake induced lateral loading. Case studies of some of the world’s most iconic buildings, illustrated with full colour photographs, structural plans and axonometrics, will bring to life the design challenges which they presented to architects and structural engineers. The Empire State Building, the Burj Khalifa, Taipei 101 and the HSB Turning Torso are just a few examples of the buildings whose real-life specifications are used to explain and illustrate core design principles, and their subsequent effect on the finished structure.