Generalized Linear Models and Extensions, Second Edition


Book Description

Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.




Mixed Effects Models and Extensions in Ecology with R


Book Description

This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.




Microeconometrics


Book Description

The book is oriented to the practitioner.




Statistical Methods for Overdispersed Count Data


Book Description

Statistical Methods for Overdispersed Count Data provides a review of the most recent methods and models for such data, including a description of R functions and packages that allow their implementation. All methods are illustrated on datasets arising in the field of health economics. As several tools have been developed to tackle over-dispersed and zero-inflated data (such as adjustment methods and zero-inflated models), this book covers the topic in a comprehensive and interesting manner. - Includes reading on several levels, including methodology and applications - Presents the state-of-the-art on the most recent zero-inflated regression models - Contains a single dataset that is used as a common thread for illustrating all methodologies - Includes R code that allows the reader to apply methodologies




Regression Analysis of Count Data


Book Description

This analysis provides a comprehensive account of models and methods to interpret frequency data.




Logistic Regression Models


Book Description

Logistic Regression Models presents an overview of the full range of logistic models, including binary, proportional, ordered, partially ordered, and unordered categorical response regression procedures. Other topics discussed include panel, survey, skewed, penalized, and exact logistic models. The text illustrates how to apply the various models t




Regression Analysis of Count Data


Book Description

This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.




Experimental Design and Data Analysis for Biologists


Book Description

Requiring only introductory statistics and basic mathematics, this textbook avoids jargon and provides worked examples, data sets and R code, and review exercises. Designed for advanced undergraduates and postgraduates studying biostatistics and experiment design in biology-related fields, it applies statistical concepts to biological scenarios.




Environmental and Ecological Statistics with R, Second Edition


Book Description

Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.




Model Based Inference in the Life Sciences


Book Description

This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.