Oxidative Stress and Biomaterials


Book Description

Oxidative Stress and Biomaterials provides readers with the latest information on biomaterials and the oxidative stress that can pose an especially troubling challenge to their biocompatibility, especially given the fact that, at the cellular level, the tissue environment is a harsh landscape of precipitating proteins, infiltrating leukocytes, released oxidants, and fluctuations of pH which, even with the slightest shift in stasis, can induce a perpetual state of chronic inflammation. No material is 100% non-inflammatory, non-toxic, non-teratogenic, non-carcinogenic, non-thrombogenic, and non-immunogenic in all biological settings and situations. In this embattled terrain, the most we can hope for from the biomaterials we design is a type of "meso-compatibility, a material which can remain functional and benign for as long as required without succumbing to this cellular onslaught and inducing a local inflammatory reaction. - Explores the challenges of designing and using biomaterials in order to minimize oxidative stress, reducing patterns of chronic inflammation and cell death - Brings together the two fields of biomaterials and the biology of oxidative stress - Provides approaches for the design of biomaterials with improved biocompatibility




Antioxidant Polymers


Book Description

Antioxidant Polymers is an exhaustive overview of the recent developments in the field of polymeric materials showing antioxidant properties. This research area has grown rapidly in the last decade because antioxidant polymers have wide industry applications ranging from materials science to biomedical, pharmaceuticals and cosmetics.




Stem Cells


Book Description

Since different types of stem cells for therapeutic applications have recently been proposed, this timely volume explores various sources of stem cells for tissue and organ regeneration and discusses their advantages and limitations. Also discussed are pros and cons for using embryonic stem cells, induced pluripotent stem cells, and adult stem cells isolated from postnatal tissues. Different types of adult stem cells for therapeutic applications are also reviewed, including hematopoietic stem cells, epidermal stem cells, endothelial progenitors, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells. This book also addresses paracrine effects of stem cells in regenerative medicine that are mediated by extracellular microvesicles and soluble secretome. Finally, potential applications of stem cells in cardiology, gastroenterology, neurology, immunotherapy, and aging are presented. This is an ideal book for students and researchers working in the stem cell research field.




Handbook of Antioxidant Methodology


Book Description

The field of antioxidant research has grown rapidly over the last 30 years and shows no sign of slowing down. In order to understand how antioxidants work, it is essential to understand how their activity is measured. However, antioxidant activity measurements are controversial and their value has been challenged. This book addresses a number of the controversies on antioxidant testing methods. Specifically, the book highlights the importance of context, helping the reader to decide what methods are most appropriate for different situations, how the results can be interpreted and what information may be inferred from the data. There are a multiplicity of methods for measuring activity, with no standardized method approved for in vitro or in vivo testing. In order to select an appropriate method, a thorough knowledge of the processes associated with reduction-oxidation is essential, leading to an improved understanding and use of activity measurements and the associated data. The book presents background information, in a unique style, which is designed to assist readers to grasp the fundamentals of redox processes, as well as thermodynamics and kinetics, which are essential to later chapters. Recovery and extraction of antioxidants from diverse matrices are presented in a clear and logical fashion along with methods used to determine antioxidant activity from a mechanistic perspective. Other chapters present current methodologies used for activity testing in different sample types ranging from foods and plants, to body fluids and even to packaging, but always with a strong emphasis on the nature of the sample and the underlying chemistry of the method. A number of emerging techniques for assessing antioxidant behaviour, namely, electrochemical methods, chip technology exploiting microfluidic devices, metabolomics plus studies of gene and protein expression, are examined. Ultimately, these techniques will be involved in generation of "big data" for which an understanding of chemometrics will be essential in drawing valid conclusions. The book is written to appeal to a wide audience, but will be particularly helpful for any researchers who are attempting to make sense of the vast literature and often conflicting messages on antioxidant activity.




Biologically Responsive Biomaterials for Tissue Engineering


Book Description

Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.




Plant-derived Bioactives


Book Description

Plants produce a vast number of bioactive compounds with different chemical scaffolds, which modulate a diverse range of molecular targets and are used as drugs for treating numerous diseases. Most present-day medicines are derived either from plant compounds or their derivatives, and plant compounds continue to offer limitless reserves for the discovery of new medicines. While different classes of plant compounds, like phenolics, flavonoids, saponins and alkaloids, and their potential pharmacological applications are currently being explored, their curative mechanisms are yet to be understood in detail. This book is divided into 2 volumes and offers detailed information on plant-derived bioactive compounds, including recent research findings. Volume 1, Plant-derived Bioactives: Chemistry and Mode of Action, discusses the chemistry of highly valued plant bioactive compounds and their mode of actions at the molecular level. Volume 2, Plant-derived Bioactives: Production, Properties and Therapeutic Applications, explores the sources, biosynthesis, production, biological properties and therapeutic applications of plant bioactives. Given their scope, these books are valuable resources for members of the scientific community wishing to further explore various medicinal plants and the therapeutic applications of their bioactive compounds. They appeal to scholars, teachers and scientists involved in plant product research, and facilitate the development of innovative new drugs.




Biomaterials


Book Description

Biomaterials are produced from biological material and are used for their physical characteristics. This book looks at the range of biomaterials and their applications which range from the use of polysaccharides as thickening agents to the use of proteins as fibres and adhesives.




Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses


Book Description

This book provides insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. It presents the recent advances in new nanomedication technologies of the effects of nanoparticles NPs on oxidative stress, RONS and ER stress. The book comprises 13 chapters covering ecotoxicology, cytotoxicity, nanotoxicity and genotoxicity mechanisms causing by the role and interactions of nanoparticles and free radicals with (RONS) and (ER) stress. Endoplasmic Reticulum (ER) Stress as a mechanism for NPs induced toxicity has been discussed. The advances of nanotechnology and the effects of nanoparticles on oxidative stress, ROS and ER stress parameters are discussed. Antioxidants, therapeutic options and regulation of the immune responses are explained throughout the book.




The Chemistry of Inorganic Biomaterials


Book Description

This book overviews the underlying chemistry behind the most common and cutting-edge inorganic materials in current use, or approaching use, in vivo.




Oxidative Stress


Book Description

This book provides a comprehensive overview of the oxidative stress related mechanisms in biological systems and the involvement of reactive oxygen and nitrogen species (ROS and RNS), the damage of DNA, proteins, and lipids caused by oxidative stress, the protection of cells and tissues against free radicals, the relation of the oxidative stress to aging and human diseases including cancer and neurological disorders, and the development of new therapeutic approaches to modulate oxidative stress. The current state-of-the-art methodologies including the development of sensors and biosensors for the detection of ROS/RNS and of biomarkers of oxidative stress are also discussed. The book is organized in three overlapping parts, starting with general considerations of the oxidative stress, homeostasis pathways, and ROS mechanisms, followed by chapters discussing the involvement of ROS in particular diseases and concluding with analytical aspects of oxidative stress monitoring. The book provides a solid background on oxidative stress and ROS/RNS generation for novice learners while also offering scientists and practitioners already involved in this field a wealth of information covering the most recent developments in the study of oxidative stress, the role of radical species, novel antioxidant therapies, and methods for assessing free radicals and oxidative stress.