Oxide-Based Materials and Structures


Book Description

Oxide-based materials and structures are becoming increasingly important in a wide range of practical fields including microelectronics, photonics, spintronics, power harvesting, and energy storage in addition to having environmental applications. This book provides readers with a review of the latest research and an overview of cutting-edge patents received in the field. It covers a wide range of materials, techniques, and approaches that will be of interest to both established and early-career scientists in nanoscience and nanotechnology, surface and material science, and bioscience and bioengineering in addition to graduate students in these areas. Features: Contains the latest research and developments in this exciting and emerging field Explores both the fundamentals and applications of the research Covers a wide range of materials, techniques, and approaches




Gallium Oxide


Book Description

Gallium Oxide: Technology, Devices and Applications discusses the wide bandgap semiconductor and its promising applications in power electronics, solar blind UV detectors, and in extreme environment electronics. It also covers the fundamental science of gallium oxide, providing an in-depth look at the most relevant properties of this materials system. High quality bulk Ga2O3 is now commercially available from several sources and n-type epi structures are also coming onto the market. As researchers are focused on creating new complex structures, the book addresses the latest processing and synthesis methods. Chapters are designed to give readers a complete picture of the Ga2O3 field and the area of devices based on Ga2O3, from their theoretical simulation, to fabrication and application. - Provides an overview of the advantages of the gallium oxide materials system, the advances in in bulk and epitaxial crystal growth, device design and processing - Reviews the most relevant applications, including photodetectors, FETs, FINFETs, MOSFETs, sensors, catalytic applications, and more - Addresses materials properties, including structural, mechanical, electrical, optical, surface and contact




GaN and ZnO-based Materials and Devices


Book Description

The AlInGaN and ZnO materials systems have proven to be one of the scientifically and technologically important areas of development over the past 15 years, with applications in UV/visible optoelectronics and in high-power/high-frequency microwave devices. The pace of advances in these areas has been remarkable and the wide band gap community relies on books like the one we are proposing to provide a review and summary of recent progress.




Zinc Oxide Materials for Electronic and Optoelectronic Device Applications


Book Description

Zinc Oxide (ZnO) powder has been widely used as a white paint pigment and industrial processing chemical for nearly 150 years. However, following a rediscovery of ZnO and its potential applications in the 1950s, science and industry alike began to realize that ZnO had many interesting novel properties that were worthy of further investigation. ZnO is a leading candidate for the next generation of electronics, and its biocompatibility makes it viable for medical devices. This book covers recent advances including crystal growth, processing and doping and also discusses the problems and issues that seem to be impeding the commercialization of devices. Topics include: Energy band structure and spintronics Fundamental optical and electronic properties Electronic contacts of ZnO Growth of ZnO crystals and substrates Ultraviolet photodetectors ZnO quantum wells Zinc Oxide Materials for Electronic and Optoelectronic Device Applications is ideal for university, government, and industrial research and development laboratories, particularly those engaged in ZnO and related materials research.




GaN-based Materials and Devices


Book Description

The unique materials properties of GaN-based semiconductors have stimulated a great deal of interest in research and development regarding nitride materials growth and optoelectronic and nitride-based electronic devices. High electron mobility and saturation velocity, high sheet carrier concentration at heterojunction interfaces, high breakdown field, and low thermal impedance of GaN-based films grown over SiC or bulk AlN substrates make nitride-based electronic devices very promising. The chemical inertness of nitrides is another key property.This volume, written by experts on different aspects of nitride technology, addresses the entire spectrum of issues related to nitride materials and devices, and it will be useful for technologists, scientists, engineers, and graduate students who are working on wide bandgap materials and devices. The book can also be used as a supplementary text for graduate courses on wide bandgap semiconductor technology.




Tin Oxide Materials


Book Description

Tin Oxide Materials: Synthesis, Properties, and Applications discusses the latest in metal oxides, an emerging area in electronic materials. As more is learned about this important materials system, more functionalities and applications have been revealed. This key reference on the topic covers important material that is ideal for materials scientists, materials engineers and materials chemists who have been introduced to metal oxides as a general category of materials, but want to take the next step and learn more about a specific material. - Provides a complete resource on tin oxide materials systems, including in-depth discussions of properties, their synthesis, modelling methods, and applications - Presents information on the well-investigated SnO2, but also includes discussions on its emerging stoichiometries, such as SnO and Sn3O4 - Includes the most relevant applications in varistors, sensing devices, fuel cells, transistors, biological studies, and much more




Metal Oxide-Based Heterostructures


Book Description

Metal Oxide–Based Heterostructures: Fabrication and Applications provides information on synthesis strategies, structural and hierarchical features, morphological characteristics of metal oxide–based heterostructures, and their diverse applications. This book begins with an introduction to the various multidimensional heterostructures, synthesis aspects, and techniques used to control the formation of heterostructures. Then, the impact of synthesis routes on the formation of mixed metal oxide heterostructures and their properties are analyzed. The effect of nonmetal doping, metal doping, and composites of metal oxide heterostructures on the properties of heterostructures is also addressed and that also includes opportunities for optimization of the material's performance for specific applications. Special attention is given to the surface characteristics of the metal oxide heterostructures and their impact on the material's performance, and the applications of metal oxide heterostructures in various fields such as environmental remediation, sensing, organic catalysis, photovoltaics, light emitting materials, and hydrogen production. - Introduces key principles for metal oxide heterostructures, their properties, key characteristics, and synthesis routes - Emphasizes the relationship between synthesis strategies and material performance, including optimization strategies such as tailoring the material's surface characteristics or structure - Discusses metal oxide heterostructures and their application in lighting and displays, energy, environment, and sensing




Silicon-Based Material and Devices, Two-Volume Set


Book Description

This book covers a broad spectrum of the silicon-based materials and their device applications. This book provides a broad coverage of the silicon-based materials including different kinds of silicon-related materials, their processing, spectroscopic characterization, physical properties, and device applications. This two-volume set offers a selection of timely topics on silicon materials namely those that have been extensively used for applications in electronic and photonic technologies. The extensive reference provides broad coverage of silicon-based materials, including different types of silicon-related materials, their processing, spectroscopic characterization, physical properties, and device applications. Fourteen chapters review the state of the art research on silicon-based materials and their applications to devices. This reference contains a subset of articles published in AP's recently released Handbook of Advanced Electronic and Photonic Materials and Devices ( 2000, ISBN 012-5137451, ten volumes) by Dr. Hari Nalwa. This two-volume work strives to present a highly coherent coverage of silicon-based material uses in the vastly dynamic arena of silicon chip research and technology. Key Features * Covers silicon-based materials and devices * Include types of materials, their processing, fabrication, physical properties and device applications * Role of silicon-based materials in electronic and photonic technology * A very special topic presented in a timely manner and in a format




Multifunctional Oxide-Based Materials: From Synthesis to Application


Book Description

The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use




Oxide Electronics


Book Description

Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.