Oxide Semiconductors


Book Description

Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry




Metal Oxide Semiconductors


Book Description

Metal Oxide Semiconductors Up-to-date resource highlighting highlights emerging applications of metal oxide semiconductors in various areas and current challenges and directions in commercialization Metal Oxide Semiconductors provides a current understanding of oxide semiconductors, covering fundamentals, synthesizing methods, and applications in diodes, thin-film transistors, gas sensors, solar cells, and more. The text presents state-of-the-art information along with fundamental prerequisites for understanding and discusses the current challenges in pursuing commercialization and future directions of this field. Despite rapid advancements in the materials science and device physics of oxide semiconductors over the past decade, the understanding of science and technology in this field remains incomplete due to its relatively short research history; this book aims to bridge the gap between the rapidly advancing research progress in this field and the demand for relevant materials and devices by researchers, engineers, and students. Written by three highly qualified authors, Metal Oxide Semiconductors discusses sample topics such as: Fabrication techniques and principles, covering vacuum-based methods, including sputtering, atomic layer deposition and evaporation, and solution-based methods Fundamentals, progresses, and potentials of p–n heterojunction diodes, Schottky diodes, metal-insulator-semiconductor diodes, and self-switching diodes Applications in thin-film transistors, detailing the current progresses and challenges towards commercialization for n-type TFTs, p-type TFTs, and circuits Detailed discussions on the working mechanisms and representative devices of oxide-based gas sensors, pressure sensors, and PH sensors Applications in optoelectronics, both in solar cells and ultraviolet photodetectors, covering their parameters, materials, and performance Memory applications, including resistive random-access memory, transistor-structured memory devices, transistor-structured artificial synapse, and optical memory transistors A comprehensive monograph covering all aspects of oxide semiconductors, Metal Oxide Semiconductors is an essential resource for materials scientists, electronics engineers, semiconductor physicists, and professionals in the semiconductor and sensor industries who wish to understand all modern developments that have been made in the field.




Amorphous Oxide Semiconductors


Book Description

AMORPHOUS OXIDE SEMICONDUCTORS A singular resource on amorphous oxide semiconductors edited by a world-recognized pioneer in the field In Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, the Editors deliver a comprehensive account of the current status of—and latest developments in—transparent oxide semiconductor technology. With contributions from leading international researchers and exponents in the field, this edited volume covers physical fundamentals, thin-film transistor applications, processing, circuits and device simulation, display and memory applications, and new materials relevant to amorphous oxide semiconductors. The book makes extensive use of structural diagrams of materials, energy level and energy band diagrams, device structure illustrations, and graphs of device transfer characteristics, photographs and micrographs to help illustrate the concepts discussed within. It also includes: A thorough introduction to amorphous oxide semiconductors, including discussions of commercial demand, common challenges faced during their manufacture, and materials design Comprehensive explorations of the electronic structure of amorphous oxide semiconductors, structural randomness, doping limits, and defects Practical discussions of amorphous oxide semiconductor processing, including oxide materials and interfaces for application and solution-process metal oxide semiconductors for flexible electronics In-depth examinations of thin film transistors (TFTs), including the trade-off relationship between mobility and reliability in oxide TFTs Perfect for practicing scientists, engineers, and device technologists working with transparent semiconductor systems, Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory will also earn a place in the libraries of students studying oxides and other non-classical and innovative semiconductor devices. WILEY SID Series in Display Technology Series Editor: Ian Sage, Abelian Services, Malvern, UK The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.




Oxide Semiconductors for Solar Energy Conversion


Book Description

Oxide semiconductors, including titanium dioxide (TiO2), are increasingly being considered as replacements for silicon in the development of the next generation of solar cells. Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide presents the basic properties of binary metal oxide semiconductors and the performance-related properties




Integration of Functional Oxides with Semiconductors


Book Description

This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.




Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO


Book Description

This book describes the application of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) technology in large-scale integration (LSI) circuits. The applications include Non-volatile Oxide Semiconductor Random Access Memory (NOSRAM), Dynamic Oxide Semiconductor Random Access Memory (DOSRAM), central processing unit (CPU), field-programmable gate array (FPGA), image sensors, and etc. The book also covers the device physics (e.g., off-state characteristics) of the CAAC-IGZO field effect transistors (FETs) and process technology for a hybrid structure of CAAC-IGZO and Si FETs. It explains an extremely low off-state current technology utilized in the LSI circuits, demonstrating reduced power consumption in LSI prototypes fabricated by the hybrid process. A further two books in the series will describe the fundamentals; and the specific application of CAAC-IGZO to LCD and OLED displays. Key features: • Outlines the physics and characteristics of CAAC-IGZO FETs that contribute to favorable operations of LSI devices. • Explains the application of CAAC-IGZO to LSI devices, highlighting attributes including low off-state current, low power consumption, and excellent charge retention. • Describes the NOSRAM, DOSRAM, CPU, FPGA, image sensors, and etc., referring to prototype chips fabricated by a hybrid process of CAAC-IGZO and Si FETs.




Defect-Induced Magnetism in Oxide Semiconductors


Book Description

Defect-Induced Magnetism in Oxide Semiconductors provides an overview of the latest advances in defect engineering to create new magnetic materials and enable new technological applications. First, the book introduces the mechanisms, behavior, and theory of magnetism in oxide semiconductors and reviews the methods of inducing magnetism in these materials. Then, strategies such as pulsed laser deposition and RF sputtering to grow oxide nanostructured materials with induced magnetism are discussed. This is followed by a review of the most relevant postdeposition methods to induce magnetism in oxide semiconductors including annealing, ion irradiation, and ion implantation. Examples of defect-induced magnetism in oxide semiconductors are provided along with selected applications. This book is a suitable reference for academic researchers and practitioners and for people engaged in research and development in the disciplines of materials science and engineering. - Reviews the magnetic, electrical, dielectric and optical properties of oxide semiconductors with defect-induced magnetism - Discusses growth and post-deposition strategies to grow oxide nanostructured materials such as oxide thin films with defect-induced magnetism - Provides examples of materials with defect-induced magnetism such as zinc oxide, cerium dioxide, hafnium dioxide, and more




Oxide and Nitride Semiconductors


Book Description

This is a unique book devoted to the important class of both oxide and nitride semiconductors. It covers processing, properties and applications of ZnO and GaN. The aim of this book is to provide the fundamental and technological issues for both ZnO and GaN.




Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO


Book Description

Electronic devices based on oxide semiconductors are the focus of much attention, with crystalline materials generating huge commercial success. Indium–gallium–zinc oxide (IGZO) transistors have a higher mobility than amorphous silicon transistors, and an extremely low off-state current. C-axis aligned crystalline (CAAC) IGZO enables aggressive down-scaling, high reliability, and process simplification of transistors in displays and LSI devices. This original book introduces the CAAC-IGZO structure, and describes the physics and technology of this new class of oxide materials. It explains the crystallographic classification and characteristics of crystalline oxide semiconductors, their crystallographic characteristics and physical properties, and how this unique material has made a major contribution to the field of oxide semiconductor thin films. Two further books in this series describe applications of CAAC-IGZO in flat-panel displays and LSI devices. Key features: Introduces the unique and revolutionary, yet relatively unknown crystalline oxide semiconductor CAAC-IGZO Presents crystallographic overviews of IGZO and related compounds. Offers an in-depth understanding of CAAC-IGZO. Explains the fabrication method of CAAC-IGZO thin films. Presents the physical properties and latest data to support high-reliability crystalline IGZO based on hands-on experience. Describes the manufacturing process the CAAC-IGZO transistors and introduces the device application using CAAC-IGZO.




Electrochemistry of Silicon and Its Oxide


Book Description

It may be argued that silicon, carbon, hydrogen, oxygen, and iron are among the most important elements on our planet, because of their involvement in geological, biol- ical, and technological processes and phenomena. All of these elements have been studied exhaustively, and voluminous material is available on their properties. Included in this material are numerous accounts of their electrochemical properties, ranging from reviews to extensive monographs to encyclopedic discourses. This is certainly true for C, H, O, and Fe, but it is true to a much lesser extent for Si, except for the specific topic of semiconductor electrochemistry. Indeed, given the importance of the elect- chemical processing of silicon and the use of silicon in electrochemical devices (e. g. , sensors and photoelectrochemical cells), the lack of a comprehensive account of the electrochemistry of silicon in aqueous solution at the fundamental level is surprising and somewhat troubling. It is troubling in the sense that the non-photoelectrochemistry of silicon seems “to have fallen through the cracks,” with the result that some of the electrochemical properties of this element are not as well known as might be warranted by its importance in a modern technological society. Dr. Zhang’s book, Electrochemical Properties of Silicon and Its Oxide, will go a long way toward addressing this shortcoming. As with his earlier book on the elect- chemistry of zinc, the present book provides a comprehensive account of the elect- chemistry of silicon in aqueous solution.