Oxygen Biology and Hypoxia


Book Description

For over fifty years the Methods in Enzymology series has been the critically acclaimed laboratory standard and one of the most respected publications in the field of biochemistry. The highly relevant material makes it an essential publication for researchers in all fields of life and related sciences. This volume features articles on the topic of oxygen biology and hypoxia.




Oxygen Sensing


Book Description

The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.




Low-Oxygen Stress in Plants


Book Description

During the last ten years, knowledge about the multitude of adaptive responses of plants to low oxygen stress has grown immensely. The oxygen sensor mechanism has been discovered, the knowledge about the interaction network of gene expression is expanding and metabolic adaptations have been described in detail. Furthermore, morphological changes were investigated and the regulative mechanisms triggered by plant hormones or reactive oxygen species have been revealed. This book provides a broad overview of all these aspects of low oxygen stress in plants. It integrates knowledge from different disciplines such as molecular biology, biochemistry, ecophysiology and agricultural / horticultural sciences to comprehensively describe how plants cope with low oxygen stress and discuss its ecological and agronomical consequences. This book is written for plant scientists, biochemists and scientists in agriculture and ecophysiology.




Systems Biology of Hypoxic Response and Angiogenesis


Book Description

In this volume, the authors will describe the mechanisms of hypoxia and angiogenesis from a systems perspective. Hypoxia – defined as low oxygen – is quantitative by nature, and species dependent. Humans evolved to function in the Earth’s atmosphere of 21% O2. At even 1% lower atmospheric oxygen levels, the body responds with a host of mechanisms unactivated in normal oxygen levels. Oxygen levels in cells can be altered by multiple means, including changes in inspired oxygen, lack of oxygen-carrying hemoglobin from the blood, increased cellular oxygen demand and changes in the cell growth rates.




Oxygen Transport to Tissue XXXVIII


Book Description

This book contains the refereed contributions from the 43rd annual meeting of ISOTT. The annual meetings of ISOTT bring together scientists from various fields (medicine, physiology, mathematics, biology, chemistry, physics, engineering, etc.) in a unique international forum. ISOTT conferences are a place where an atmosphere of interaction is created, where many questions are asked after each presentation and lively discussions occur at a high scientific level. This vivid interaction is the main motivation for members to participate and gain new ideas and knowledge in the broad field of oxygen transport to tissue. The proceedings include sessions covered various research topics including Multi-Modal Imaging/Spectroscopy & Instrumentation; Cancer Metabolism; Cellular Hypoxia and Mitochondrial Function; Brain Oxygenation and Function; Other Organ Function and Metabolism; Oxygen Transport in Sports, Diseases and Clinical Care; Acupuncture, Meridians, and Primo Vascular System; EPR, MRS and MRI.




Oxygen Transport to Tissue XXXVII


Book Description

This book contains the refereed contributions from the 42nd annual meeting of ISOTT. The annual meetings of ISOTT bring together scientists from various fields (medicine, physiology, mathematics, biology, chemistry, physics, engineering, etc.) in a unique international forum. ISOTT conferences are a place where an atmosphere of interaction is created, where many questions are asked after each presentation and lively discussions occur at a high scientific level. This vivid interaction is the main motivation for members to participate and gain new ideas and knowledge in the broad field of oxygen transport to tissue. The papers in this volume summarize some of the outstanding contributions from the 42nd annual meeting, which included sessions on: cellular hypoxia and mitochondria; blood substitutes and oxygen therapeutics; oxygen transport in critical care medicine and disease; muscle oxygenation; multi modal imaging techniques; brain oxygenation and imaging; optical techniques for oxygen measurement; microcirculation; mathematical modelling of oxygen transport; and cancer metabolism.




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




Hypoxia


Book Description

The International Hypoxia Symposium convenes biannually to bring together international experts from many fields to explore the state of the art in normal and pathophysiological responses to hypoxia. Representatives from five continents and 32 countries joined together in February 2003 for four days in the dramatic mountains of Banff, Alberta. As editors of the Proceedings of the International Hypoxia Symposia, we strive to maintain a 26 six year tradition of presenting a stimulating blend of clinical and basic science papers focused on hypoxia. Topics covered in 2003 include hibernation and hypoxia, hypoxia and fetal development and new advances in high altitude pathophysiology, oxidative stress and membrane damage, hypoxic regulation of blood flow, heat shock proteins in hypoxia, and future directions in hypoxia research. In 2003 we also had the privilege ofhonoring John W. Severinghaus as a friend, colleague, mentor and inspiration to many in the field. Tom Hornbein's personal tribute to John Severinghaus is the first chapter in this volume, followed by an entertaining update of the history of the discovery of oxygen written by John Severinghaus.




Hypoxia and Anoxia


Book Description

The molecular deprivation of oxygen is manifested by hypoxia, a deficiency of oxygen and anoxia, or the absence of oxygen supply to the tissues. This book entitled Hypoxia and Anoxia will cover a broad range of understanding on hypoxia and anoxia from molecular mechanisms to pathophysiology. Hypoxia and anoxia stimulate multiple systems through specific cell signal transduction pathways and regulate several transcriptional factors like HIF-1, REST to encode genes for VEGF, Epo, etc. This book will also highlight different types of hypoxia and anoxia along with their impact on apoptosis, cardiovascular pathophysiology, and glucose regulatory mechanisms. This book will be a ready reckoner to give a deep understanding of the oxygen-sensing environment in vivo for researchers, academicians, and clinicians throughout the world.




Oxygen Transport to Tissue XXVI


Book Description

The International Society of Oxygen Transport to Tissue (ISOTT) was founded in 1973 to provide a forum for bioengineers, basic scientists, physiologists, and physicians to discuss new data, original theories, new interpretations of old data, and new technologies for the measurement of oxygen. At each annual meeting all posters are presented orally along with plenary lectures, and all presentations are given in a general session attended by everyone. Each meeting has had a specific focus, ranging from neonatology to physical chemistry to cancer biology. The Society has helped to build many careers, through opportunities to meet leaders in the field, and through awards made to young physicians and scientists. The Society also, through cross fertilization of ideas and scientific comradery, has inspired many breakthroughs in clinical medicine that now benefit mankind. I find myself president of the society after having been a winner of the Melvin Knisely Award for young scientists, in 1991. The 2003 meeting emphasized the role of oxygen and oxygen measurement in tumor growth, metastasis, physiology, and treatment resistance. Additionally, however, completely novel approaches to measurement of tissue oxygen were presented (notably work by Dr. Takahashi) and molecular methods for estimating tissue oxygen were evaluated. Papers discussing other aspects of oxygen measurement and pathophysiology were presented including in vivo ESR spectroscopy (notably including Dr. Swartz and colleagues), exercise physiology, organ transplant outcome (discussed by Dr. Cicco, our 2004 president), circulatory physiology, and cerebral oxygenation (notably including Dr. Chance).