Oxygen Homeostasis and Its Dynamics


Book Description

This first volume in a projected series contains the proceedings of the first of the Keio University International Symposia for Life Sciences and Medicine under the sponsorship of the Keio University Medical Science Fund. As stated in the address by the President of Keio University at the opening of the 1996 symposium, the fund of Dr. Mitsunada Sakaguchi. The Keio was established by the generous donation University International Symposia for Life Sciences and Medicine constitute one of the core activities of the fund. The objective is to contribute to the international community by developing human resources, promoting scientific knowledge, and encouraging mutual exchange. Every year, the Executive Committee of the Interna tional Symposia for Life Sciences and Medicine selects the most interesting topics for the symposium from applications received in response to a call for papers to the Keio medical community. The publication of these proceedings is intended to publicize and distribute information arising from the lively discussions of the most exciting and current issues during the symposium. Weare grateful to Dr. Mitsunada Sakaguchi, who made the symposium possible, the members of the program committee, and the office staff whose support guaran teed the success of the symposium. Finally, we thank Springer-Verlag, Tokyo, for their assistance in publishing this work. Akimichi Kaneko, M. D. , Ph. D.







Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.







Oxygen Sensing


Book Description

The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.







Measuring Oxidants and Oxidative Stress in Biological Systems


Book Description

This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.







Oxidative Stress


Book Description

Oxidative Stress: Eustress and Distress presents current knowledge on oxidative stress within the framework of redox biology and translational medicine. It describes eustress and distress in molecular terms and with novel imaging and chemogenetic approaches in four sections: - A conceptual framework for studying oxidative stress. - Processes and oxidative stress responses. Signaling in major enzyme systems (oxidative eustress), and damaging modification of biomolecules (oxidative distress). - The exposome addresses lifelong exposure and impact on health, nutrient sensing, exercise and environmental pollution. - Health and disease processes, including ischemia-reperfusion injury, developmental and psychological disorders, hepatic encephalopathy, skeletal muscle disorders, pulmonary disease, gut disease, organ fibrosis, and cancer. Oxidative Stress: Eustress and Distress is an informative resource useful for active researchers and students in biochemistry, molecular biology, medicinal chemistry, pharmaceutical science, nutrition, exercise physiology, analytical chemistry, cell biology, pharmacology, clinical medicine, and environmental science. - Characterizes oxidative stress within the framework of redox biology, redox signaling, and medicine - Empowers researchers and students to quantify specific reactants noninvasively, identify redox biomarkers, and advance translational studies - Features contributions from international leaders in oxidative stress and redox biology research




Dynamics of Blood Cell Suspensions in Microflows


Book Description

The first book to provide a physical perspective of blood microcirculation Draws attention to the potential of this physical approach for novel applications in medicine Edited by specialists in this field, with chapter contributions from subject area specialists