Oxide Surfaces


Book Description

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.




Electrocatalysts for Low Temperature Fuel Cells


Book Description

Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.




Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries


Book Description

Metal-air batteries (MABs) have attracted attention because of their high specific energy, low cost, and safety features. This book discusses science and technology including material selection, synthesis, characterization, and their applications in MABs. It comprehensively describes various composite bifunctional electrocatalysts, corrosion/oxidation of carbon-containing air cathode catalysts, and how improvements can be achieved in the catalytic activities of oxygen reduction reaction and oxygen evolution reaction and their durability/stability. This book also analyzes, compares, and discusses composite bifunctional electrocatalysts in the applications of MABs, matching the fast information of commercial MABs in requirements. Aimed at researchers and industry professionals, this comprehensive work provides readers with an appreciation for what bifunctional composite electrocatalysts are capable of, how this field has grown in the past decades, and how bifunctional composite electrocatalysts can significantly improve the performance of MABs. It also offers suggestions for future research directions to overcome technical challenges and further facilitate research and development in this important area.




Electrochemical Energy


Book Description

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.




Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage


Book Description

Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage addresses current challenges and covers design and fabrication approaches for nanomaterials based on metal organic frameworks for energy generation and storage technologies. The effect of synthetic diversity, functionalization, ways of improving conductivity and electronic transportation, tuning-in porosity to accommodate various types of electrolyte, and the criteria to achieve the appropriate pore size, shape and surface group of different metal sites and ligands are explored. The effect of integration of other elements, such as second metals or hetero-atomic doping in the system, to improve catalytic activity and durability, are also covered. This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems. - Describes major metal organic framework-based nanomaterials applications for fuel cell, battery, supercapacitor and photovoltaic applications - Provides information on the various nanomaterial types used for creating the most efficient energy conversion and storage systems - Assesses the major challenges of using nanotechnology to manufacture energy conversion and storage systems on an industrial scale




Carbon Nanotubes and Graphene


Book Description

Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed. - Updated discussion of properties, structure, and morphology of biological and flexible electronic applications aids fundamental knowledge discovery - Innovative parallel focus on nanotubes and graphene enables you to learn from the successes and failures of, respectively, mature and emergent partner research disciplines - High-quality figures and tables on physical and mathematical applications expertly summarize key information – essential if you need quick, critically relevant data




Electrochemical Water Electrolysis


Book Description

This book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.




Electrochemical Water Electrolysis


Book Description

This book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.




Electrocatalysts for Fuel Cells and Hydrogen Evolution


Book Description

The book starts with a theoretical understanding of electrocatalysis in the framework of density functional theory followed by a vivid review of oxygen reduction reactions. A special emphasis has been placed on electrocatalysts for a proton-exchange membrane-based fuel cell where graphene with noble metal dispersion plays a significant role in electron transfer at thermodynamically favourable conditions. The latter part of the book deals with two 2D materials with high economic viability and process ability and MoS2 and WS2 for their prospects in water-splitting from renewable energy.




Graphene Surfaces


Book Description

Graphene Surfaces: Particles and Catalysts focuses on the surface chemistry and modification of graphene and its derivatives from a theoretical and electrochemical point-of-view. It provides a comprehensive overview of their electronic structure, synthesis, properties and general applications in catalysis science, including their relevance in alcohols and their derivatives oxidation, oxygen reduction, hydrogen evolution, energy storage, corrosion protection and supercapacitors. The book also covers emerging research on graphene chemistry and its impact. Chemical engineers, materials scientists, electrochemists and engineers will find information that will answer their most pressing questions on the surface aspects of graphene and its effect on catalysis. - Serves as a time-saving reference for researchers, graduated students and chemical engineers - Equips the reader with catalysis knowledge for practical applications - Discusses the physical and electrochemical properties of graphene - Provides the most important applications of graphene in electrochemical systems - Highlights both experimental and theoretical aspects of graphene