Packaged Composite Applications


Book Description

Intended for executives and IT managers, this book makes the business case for packaged component applications (PCAs) to become the new architecture for enterprise applications, and suggests solutions to the problems that may be encountered during implementation. The author presents arguments for and against delivering more automation through PCAs, explains how PCAs are built on top of the ESA platform, and explores possible business scenarios. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).




Bionanocomposites for Packaging Applications


Book Description

This book presents a unified overview of eco-friendly bionanocomposites on the basis of characterization, design, manufacture, and application. It also explores replacing conventional materials with bionanocomposites with a focus on their use in packaging applications. In addition, the book broadens readers’ insights by providing illustrations and tables summarizing the latest research on the packaging applications of different bionanocomposites. By offering a detailed account of this field of research and describing real-world applications, it enables researchers, scientists, and professionals in industry to develop a more informed understanding of the need for bionanocomposites in the development of green, biodegradable, and sustainable packaging applications.




Composite Materials: Applications in Engineering, Biomedicine and Food Science


Book Description

Composite materials are formed when the combination of separate materials acquire new properties distinct from its components. They have a range of applications in fields such as mechanical and electrical engineering, food science and biomedicine and represent a fast-growing area of research. Composite Materials: Applications in Engineering, Biomedicine and Food Science provides an overview of current technologies and applications related to composite materials in these fields. Organized by discipline, the text encompasses a wide variety of composite materials, including polymer, ceramic, biomaterial, hydroxyapatite, nanofiber and green composites. Early chapters detail the enhanced mechanical, magnetic, dielectric properties of electrical and thermal conductive composite materials, which are essential in daily science. Subsequent chapters focus on filler or reinforcement materials, including carbon materials, hybrid materials and nanomaterials. Particular emphasis is placed on nanocomposite materials, as these have increasingly diverse field applications. Various manufacturing methods, such as the synthesis method and top-down/bottom-up manufacturing, are also discussed. Coverage of the recent progress, challenges and opportunities surrounding composite materials make this text a one-stop reference for engineers, scientists and researchers working in this exciting field.




Biodegradable Composites for Packaging Applications


Book Description

"Biodegradable Composites for Packaging Applications" describes design, processing, and manufacturing of advanced biodegradable composites in packaging industry applications. It covers fundamentals of biodegradable polymers followed by introduction to biodegradable materials for food packaging industry and its processing mechanisms. Pertinent applications are explained across different chapters including intelligent packaging, applied technologies, degradation problems and its impact on environment and associated challenges. Features Covers biodegradable composites and targeted applications in packaging for industrial applications. Includes exhaustive processing and characterizations of biodegradable composites. Discusses innovative commodities packaging applications. Reviews advanced integrated design and fabrication problems for conductive and sensors applications. Explores various properties and functionalities through extensive theoretical and experimental modeling. This volume is aimed at researchers and graduate students in sustainable materials, composite technology, biodegradable plastics, and food technology and engineering.




Architecting Composite Applications and Services with TIBCO


Book Description

Today's complex composite applications and services must be architected with exceptional care. TIBCO Principal Software Architect Dr. Paul C. Brown shows how to use TIBCO technologies to architect them for maximum performance, reliability, and value. Brown covers all major aspects of architecture: participant structure and organization; work structure and organization; and mapping of work onto participants. He first describes essential concepts associated with composite application and services, including service utilization contracts, component lifecycles, naming/namespaces, and versioning. Next, he reviews relevant TIBCO products and technologies. This book's full section on service design addresses specification, architecture, data modeling, data structure design, and designing for versioning. Brown identifies proven service architecture patterns for several key issues. An extensive discussion of composite applications covers composition styles and architecture; collaboration; orche.




Electronic Composites


Book Description

This 2005 book describes the processing, simulation and applications of electronic composites.




Composites Materials for Food Packaging


Book Description

The novel insights, as well as the main drawbacks of each engineered composites material is extensively evaluated taking into account the strong relationship between packaging materials, environmental and reusability concerns, food quality, and nutritional value. Composites, by matching the properties of different components, allow the development of innovative and performing strategies for intelligent food packaging, thus overcoming the limitations of using only a single material. The book starts with the description of montmorillonite and halloysite composites, subsequently moving to metal-based materials with special emphasis on silver, zinc, silicium and iron. After the discussion about how the biological influences of such materials can affect the performance of packaging, the investigation of superior properties of sp2 carbon nanostructures is reported. Here, carbon nanotubes and graphene are described as starting points for the preparation of highly engineered composites able to promote the enhancement of shelf-life by virtue of their mechanical and electrical features. Finally, in the effort to find innovative composites, the applicability of biodegradable materials from both natural (e.g. cellulose) and synthetic (e.g. polylactic acid – PLA) origins, with the aim to prove that polymer-based materials can overcome some key limitations such as environmental impact and waste disposal.




Functional Coatings for Food Packaging Applications


Book Description

The food packaging industry is experiencing one of the most relevant revolutions associated with the transition from fossil-based polymers to new materials of renewable origin. However, high production costs, low performance, and ethical issues still hinder the market penetration of bioplastics. Recently, coating technology was proposed as an additional strategy for achieving a more rational use of the materials used within the food packaging sector. According to the packaging optimization concept, the use of multifunctional thin layers would enable the replacement of multi-layer and heavy structures, thus reducing the upstream amount of packaging materials while maintaining (or even improving) the functional properties of the final package to pursue the goal of overall shelf life extension. Concurrently, the increasing requirements among consumers for convenience, smaller package sizes, and for minimally processed, fresh, and healthy foods have necessitated the design of highly sophisticated and engineered coatings. To this end, new chemical pathways, new raw materials (e.g., biopolymers), and non-conventional deposition technologies have been used. Nanotechnology, in particular, paved the way for the development of new architectures and never-before-seen patterns that eventually yielded nanostructured and nanocomposite coatings with outstanding performance. This book covers the most recent advances in the coating technology applied to the food packaging sector, with special emphasis on active coatings and barrier coatings intended for the shelf life extension of perishable foods.




The Agile Enterprise


Book Description

One of the first widely available resources on the subject of adaptive enterprise. The text takes on a new and burgeoning field of study and development and provides the opportunity to help shape and guide the thinking of decision makers in the world of both public and private sectors. The authors contribute a wealth of experience from professional situations having worked for IBM Global Services Consulting Group and SAP Institute for Innovation and Development.




Bio-Based Packaging


Book Description

Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs