Paper Based Sensors


Book Description

Paper Based Sensors, Volume 89, the latest release in this comprehensive series that gathers the most important issues relating to the design and application of these cost-effective devices used in many industries, including health and environment diagnostics, safety and security, chemistry, optics, electrochemistry, nanoscience and nanotechnologies, presents the latest updates in the field. Chapters in this new release include Exploring paper as a substrate for electrochemical micro-devices, Paper-based sensors for application in biological compound detection, Printed paper-based (bio)sensors: design, fabrication and applications, Paper-based electrochemical sensing devices, Multifarious aspects of electrochemical paper-based (bio)sensors, Paper Based Biosensors for Clinical and Biomedical Applications, and more. Provides updates on the latest design in paper-based sensors using various nano and micromaterials Includes optical/electrical-based detection modes integrated within paper-based platforms Covers applications of paper-based platforms in diagnostics and other industries




Paper Based Sensors


Book Description

Paper Based Sensors, Volume 89, the latest release in this comprehensive series that gathers the most important issues relating to the design and application of these cost-effective devices used in many industries, including health and environment diagnostics, safety and security, chemistry, optics, electrochemistry, nanoscience and nanotechnologies, presents the latest updates in the field. Chapters in this new release include Exploring paper as a substrate for electrochemical micro-devices, Paper-based sensors for application in biological compound detection, Printed paper-based (bio)sensors: design, fabrication and applications, Paper-based electrochemical sensing devices, Multifarious aspects of electrochemical paper-based (bio)sensors, Paper Based Biosensors for Clinical and Biomedical Applications, and more. Provides updates on the latest design in paper-based sensors using various nano and micromaterials Includes optical/electrical-based detection modes integrated within paper-based platforms Covers applications of paper-based platforms in diagnostics and other industries




Paper Microfluidics


Book Description

This volume provides an overview of the recent advances in the field of paper microfluidics, whose innumerable research domains have stimulated considerable efforts to the development of rapid, cost-effective and simplified point-of-care diagnostic systems. The book is divided into three parts viz. theoretical background of paper microfluidics, fabrication techniques for paper-based devices, and broad applications. Each chapter of the book is self-explanatory and focuses on a specific topic and its relation to paper microfluidics and starts with a brief description of the topic’s physical background, essential definitions, and a short story of the recent progress in the relevant field. The book also covers the future outlook, remaining challenges, and emerging opportunities. This book shall be a tremendous up-to-date resource for researchers working in the area globally.




Paper-Based Analytical Devices for Chemical Analysis and Diagnostics


Book Description

Paper-Based Analytical Devices for Chemical Analysis and Diagnostics is a valuable source of information for those interested in microfluidics, bioanalytical devices, chemical instrumentation/mechanization, in-field analysis, and more. This book provides a critical review of the scientific and technological progress of paper-based devices, as well as future trends in the field of portable paper-based sensors for chemical analysis and diagnostics directly at point of need. It uniquely focuses on the analytical techniques associated with each type of device, providing a practical framework for any researcher to use while learning how to use new types of devices in their work, deciding which ones are best for their needs, developing new devices, or working toward commercialization. Reviews the evolution of this area and offers predictions for the future of the field of paper-based analytical devices Explores the analytical techniques used in development of paper-based devices Discusses challenges and shortcomings specific to each type of device, helping users and developers to avoid pitfalls




Introduction to Biosensors


Book Description

This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors.New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various fluorescence detection methods, fluoride ion-selective electrode, advanced glucose sensing methods including continuous glucose monitoring, paper-based lab-on-a-chip, etc. A new chapter on nano-biosensors and an appendix on microcontrollers make this textbook ideal for undergraduate engineering students studying biosensors. It can also serve as a hands-on guide for scientists and engineers working in the sensor or biosensor industries.




Biosensors for Environmental Monitoring


Book Description

Real-time and reliable detection of molecular compounds and bacteria is essential in modern environmental monitoring. For rapid analyses, biosensing devices combining high selectivity of biomolecular recognition and sensitivity of modern signal-detection technologies offer a promising platform. Biosensors allow rapid on-site detection of pollutants and provide potential for better understanding of the environmental processes, including the fate and transport of contaminants.This book, including 12 chapters from 37 authors, introduces different biosensor-based technologies applied for environmental analyses.




Wicking in Porous Materials


Book Description

A comprehensive presentation of wicking models developed in academia and industry, Wicking in Porous Materials: Traditional and Modern Modeling Approaches contains some of the most important approaches and methods available, from the traditional Washburn-type models to the latest Lattice-Boltzmann approaches developed during the last few years. It provides a sound conceptual framework for learning the science behind different mathematical models while at the same time being aware of the practical issues of model validation as well as measurement of important properties and parameters associated with various models. Top experts in the field reveal the secrets of their wicking models. The chapters cover the following topics: Wetting and wettability Darcy’s law for single- and multi-phase flows Traditional capillary models, such as the Washburn-equation based approaches Unsaturated-flow based methodologies (Richard’s Equation) Sharp-front (plug-flow) type approaches using Darcy’s law Pore network models for wicking after including various micro-scale fluid-flow phenomena Studying the effect of evaporation on wicking using pore network models Fractal-based methods Modeling methods based on mixture theory Lattice-Boltzmann method for modeling wicking in small scales Modeling wicking in swelling and non-rigid porous media This extensive look at the modeling of porous media compares various methods and treats traditional topics as well as modern technologies. It emphasizes experimental validation of modeling approaches as well as experimental determination of model parameters. Matching models to particular media, the book provides guidance on what models to use and how to use them.




Nanotechnology for Microfluidics


Book Description

The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.




Miniaturized Analytical Devices


Book Description

Miniaturized Analytical Devices An in-depth overview of integrating functionalized nanomaterials with mass spectrometry, spectroscopy, electrophoresis, and other important analytical techniques Miniaturized Analytical Devices: Materials and Technology is an up-to-date resource exploring the analytical applications of miniaturized technology in areas such as clinical microbiology, pharmaceuticals, agriculture, and environmental analysis. The book covers the integration of functional nanomaterials in mass spectrometry, microscopy, electrophoresis, and more—providing the state-of-the-art information required for successfully implementing a range of chemical analysis techniques on microchips. Featuring contributions from a panel of international experts in the field, the book begins with an introduction to selected miniaturized devices, nanomaterials, and analytical methods. Subsequent sections describe functionalized nanomaterials (FNMs) for miniaturized devices and discuss techniques such as miniaturized mass spectrometry for bioassays and miniaturized microscopy for cell imaging. The book concludes by exploring a variety of applications of miniaturized devices in areas including metal analysis, bioimaging, DNA separation and analysis, molecular biology, and more. This timely volume: Surveys the current state of the field and provides a starting point for developing faster, more reliable, and more selective analytical devices Focuses on the practical applications of miniaturized analytical devices in materials science, clinical microbiology, the pharmaceutical industry, and environmental analysis Covers a wide range of materials and analytical techniques such as microvolume UV-VIS spectroscopy, microchip and capillary electrophoresis, and matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis Discusses the role of miniaturized analytical devices in securing a green and sustainable future Miniaturized Analytical Devices: Materials and Technology is essential reading for analytical chemists, analytical laboratories, materials scientists, biologists, life scientists, and advanced students in related fields.




Graphene-Based Electrochemical Sensors for Biomolecules


Book Description

Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail. Covers the importance of detecting biomolecules and the application of graphene and its nanocomposite materials in the detection of a wide variety of bioanalytes Presents easily understood fundamentals of electrochemical sensing systems and the role of graphene-based nanocomposite materials in research and development