Proceedings of the 2nd International Conference on Developments in Valves and Actuators for Fluid Control


Book Description

The flow of two-phase mixtures through restrictions. is a complex phenomenon that to date has not been fully described analytically. It is an area that received a geat deal of attention because of its application to nuclear reactor technology. The majority of the work done in this area considered ideal geometries such as nozzles, orifices and straight pipes. In the area of control valves very little work has been done. Brockett & King [1] studied subcooled water. Stiles [2] looked at subcooled freon. Martinec [4] compared subcooled freon in valves with ideal geometries. Sheldon & Schuder [3) looked experimentally at airjwater mixtures through valves that resulted in a sizing procedure. Fagerlund [10] presented an analytical model that required use of the Sheldon & Schuder data to establish the behavior of valves as opposed to more ideal geometries. However, the data used was limited to a single valve travel. Fagerlund & Storer [11] have expanded this to include several valve travels that further generalizes the technique. It is the intent of this paper to summarize a practical approach to s1z1ng valves for two-phase service that may be reduced to either a graphical or calculator procedure. Discussion of Analysis A fundamental assumption in this method is that the quality remains constant between the inlet and the vena contracta. For gas-liquid flows it is obvious providing vaporization does not occur.




Multiphase Flow Metering


Book Description

Over the last two decades the development, evaluation and use of MFM systems has been a major focus for the Oil & Gas industry worldwide. Since the early 1990's, when the first commercial meters started to appear, there have been around 2,000 field applications of MFM for field allocation, production optimisation and well testing. So far, many alternative metering systems have been developed, but none of them can be referred to as generally applicable or universally accurate. Both established and novel technologies suitable to measure the flow rates of gas, oil and water in a three-phase flow are reviewed and assessed within this book. Those technologies already implemented in the various commercial meters are evaluated in terms of operational and economical advantages or shortcomings from an operator point of view. The lessons learned about the practical reliability, accuracy and use of the available technology is discussed. The book suggests where the research to develop the next generation of MFM devices will be focused in order to meet the as yet unsolved problems. The book provides a critical and independent review of the current status and future trends of MFM, supported by the authors' strong background on multiphase flow and by practical examples. These are based on the authors' direct experience on MFM, gained over many years of research in connection with both operators and service companies. As there are currently no books on the subject of Multiphase Flow Metering for the Oil & Gas industry, this book will fill in the gap and provide a theoretical and practical reference for professionals, academics, and students.* Written by leading scholars and industry experts of international standing* Includes strong coverage of the theoretical background, yet also provides practical examples and current developments* Provides practical reference for professionals, students and academics




Multiphase Flow Handbook, Second Edition


Book Description

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.







Proceedings of 2nd International Conference on Fluid Dynamics & Aerodynamics 2017


Book Description

October 19-20, 2017 Rome, Italy key Topics : Fluid Dynamics, Numerical Methods, CFD Methodology, Geophysical Fluid Dynamics, Heat Transfer System, Aerodynamics, Aero-acoustics, Magneto Hydrodynamics, Aerodynamics Simulations, Biofluid Mechanics, Thermo-Fluid Dynamics, Micro Fluidics,




Handbook of Natural Gas Transmission and Processing


Book Description

A unique, well-documented, and forward-thinking work, the second edition of Handbook of Natural Gas Transmission and Processing continues to present a thoroughly updated, authoritative, and comprehensive description of all major aspects of natural gas transmission and processing. It provides an ideal platform for engineers, technologists, and operations personnel working in the natural gas industry to get a better understanding of any special requirements for optimal design and operations of natural gas transmission pipelines and processing plants. First book of its kind that covers all aspects of natural gas transmission and processing Provides pivotal updates on the latest technologies, which have not been addressed in-depth in any existing books Offers practical advice for design and operation based on sound engineering principles and established techniques Examines ways to select the best processing route for optimal design of gas-processing plants Contains new discussions on process modeling, control, and optimization in gas processing industry




Multiphase Flow Dynamics 2


Book Description

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM




Index of Conference Proceedings


Book Description




In Fascination of Fluid Dynamics


Book Description

In Fascination of Fluid Dynamics contains a collection of papers by international experts in hydrodynamics, based on oral presentations at a symposium held in honour of Professor Leen van Wijngaarden on his 65th birthday. The book begins with a personal sketch of his life and scientific career. It continues with a mixture of papers that address recent developments in various branches of fluid mechanics. Many of the papers cover different aspects of multiphase flows: bubble dynamics, cavitation, bubbles and particles in turbulent flows, suspension flows, and wave phenomena in fluidised beds. Other topics that are addressed include: dynamics of jets, shock waves, MHD turbulence, selforganisation phenomena in 2D turbulence, vortex rings and the thermodynamics of tropical cyclones. This edited volume will be valuable reading for researchers, engineers and students interested in hydrodynamics, and in particular in multiphase flows.