Parallel Algorithms for Matrix Computations


Book Description

Describes a selection of important parallel algorithms for matrix computations. Reviews the current status and provides an overall perspective of parallel algorithms for solving problems arising in the major areas of numerical linear algebra, including (1) direct solution of dense, structured, or sparse linear systems, (2) dense or structured least squares computations, (3) dense or structured eigenvaluen and singular value computations, and (4) rapid elliptic solvers. The book emphasizes computational primitives whose efficient execution on parallel and vector computers is essential to obtain high performance algorithms. Consists of two comprehensive survey papers on important parallel algorithms for solving problems arising in the major areas of numerical linear algebra--direct solution of linear systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic solvers, plus an extensive up-to-date bibliography (2,000 items) on related research.




Parallel Algorithms and Matrix Computation


Book Description

An introduction to parallel computation and the application of parallel algorithms to numerical linear algebra, based on a lecture course at the University of Cambridge. The emphasis is on the design and analysis of algorithms which are of importance to industrial and academic research.




Parallel Algorithms in Computational Science and Engineering


Book Description

This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.







Parallel Algorithms for Regular Architectures


Book Description

Parallel-Algorithms for Regular Architectures is the first book to concentrate exclusively on algorithms and paradigms for programming parallel computers such as the hypercube, mesh, pyramid, and mesh-of-trees.




Introduction to Parallel Computing


Book Description

Mathematics of Computing -- Parallelism.




Parallel and Distributed Computation: Numerical Methods


Book Description

This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.




Parallel Scientific Computing in C++ and MPI


Book Description

Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.




Parallel Algorithms


Book Description

Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract




Parallel Scientific Computation


Book Description

Parallel Scientific Computation presents a methodology for designing parallel algorithms and writing parallel computer programs for modern computer architectures with multiple processors.