Parallel Algorithms for Matrix Computations


Book Description

Describes a selection of important parallel algorithms for matrix computations. Reviews the current status and provides an overall perspective of parallel algorithms for solving problems arising in the major areas of numerical linear algebra, including (1) direct solution of dense, structured, or sparse linear systems, (2) dense or structured least squares computations, (3) dense or structured eigenvaluen and singular value computations, and (4) rapid elliptic solvers. The book emphasizes computational primitives whose efficient execution on parallel and vector computers is essential to obtain high performance algorithms. Consists of two comprehensive survey papers on important parallel algorithms for solving problems arising in the major areas of numerical linear algebra--direct solution of linear systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic solvers, plus an extensive up-to-date bibliography (2,000 items) on related research.




Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms


Book Description

Numerical linear algebra, digital signal processing, and parallel algorithms are three disciplines with a great deal of activity in the last few years. The interaction between them has been growing to a level that merits an Advanced Study Institute dedicated to the three areas together. This volume gives an account of the main results in this interdisciplinary field. The following topics emerged as major themes of the meeting: - Singular value and eigenvalue decompositions, including applications, - Toeplitz matrices, including special algorithms and architectures, - Recursive least squares in linear algebra, digital signal processing and control, - Updating and downdating techniques in linear algebra and signal processing, - Stability and sensitivity analysis of special recursive least squares problems, - Special architectures for linear algebra and signal processing. This book contains tutorials on these topics given by leading scientists in each of the three areas. A consider- able number of new research results are presented in contributed papers. The tutorials and papers will be of value to anyone interested in the three disciplines.




Parallel Algorithms for Numerical Linear Algebra


Book Description

This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for parallel shared-memory systems, and the design of fast algorithms and implementations for vector supercomputers.




Parallel Algorithms and Matrix Computation


Book Description

An introduction to parallel computation and the application of parallel algorithms to numerical linear algebra, based on a lecture course at the University of Cambridge. The emphasis is on the design and analysis of algorithms which are of importance to industrial and academic research.




Parallel and Distributed Computation: Numerical Methods


Book Description

This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.




Parallel Complexity Of Linear System Solution


Book Description

This book presents the most important parallel algorithms for the solution of linear systems. Despite the evolution and significance of the field of parallel solution of linear systems, no book is completely dedicated to the subject. People interested in the themes covered by this book belong to two different groups: numerical linear algebra and theoretical computer science, and this is the first effort to produce a useful tool for both. The book is organized as follows: after introducing the general features of parallel algorithms and the most important models of parallel computation, the authors analyze the complexity of solving linear systems in the circuit, PRAM, distributed, and VLSI models. The approach covers both the general case (i.e. dense linear systems without structure) and many important special cases (i.e. banded, sparse, Toeplitz, circulant linear systems).




Graph Algorithms in the Language of Linear Algebra


Book Description

The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.




Numerical Algorithms


Book Description

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig




Parallel Algorithms for Optimal Control of Large Scale Linear Systems


Book Description

Parallel Algorithms for Optimal Control of Large Scale Linear Systems is a comprehensive presentation for both linear and bilinear systems. The parallel algorithms presented in this book are applicable to a wider class of practical systems than those served by traditional methods for large scale singularly perturbed and weakly coupled systems based on the power-series expansion methods. It is intended for scientists and advance graduate students in electrical engineering and computer science who deal with parallel algorithms and control systems, especially large scale systems. The material presented is both comprehensive and unique.




Parallel Numerical Algorithms


Book Description

Mathematics of Computing -- Parallelism.