Natural and Artificial Parallel Computation


Book Description

These eleven contributions by leaders in the fields of neuroscience, artificial intelligence, and cognitive science cover the phenomenon of parallelism in both natural and artificial systems, from the neural architecture of the human brain to the electronic architecture of parallel computers.The brain's complex neural architecture not only supports higher mental processes, such as learning, perception, and thought, but also supervises the body's basic physiological operating system and oversees its emergency services of damage control and self-repair. By combining sound empirical observation with elegant theoretical modeling, neuroscientists are rapidly developing a detailed and convincing account of the organization and the functioning of this natural, living parallel machine. At the same time, computer scientists and engineers are devising imaginative parallel computing machines and the programming languages and techniques necessary to use them to create superb new experimental instruments for the study of all parallel systems.Michael A. Arbib is Professor of Computer Science, Neurobiology, and Physiology at the University of Southern California. J. Alan Robinson is University Professor at Syracuse University.Contents: Natural and Artificial Parallel Computation, M. A. Arbib, J. A. Robinson. The Evolution of Computing, R. E. Gomory. The Nature of Parallel Programming, P. Brinch Hansen. Toward General Purpose Parallel Computers, D. May. Applications of Parallel Supercomputers, G. E. Fox. Cooperative Computation in Brains and Computers, M. A. Arbib. Parallel Processing in the Primate Cortex, P. Goldman-Rakic. Neural Darwinism, G. M. Edelman, G. N. Reeke, Jr. How the Brain Rewires Itself, M. Merzenich. Memory-Based Reasoning, D. Waltz. Natural and Artificial Reasoning, J. A. Robinson.




Parallel Computation and Computers for Artificial Intelligence


Book Description

It has been widely recognized that artificial intelligence computations offer large potential for distributed and parallel processing. Unfortunately, not much is known about designing parallel AI algorithms and efficient, easy-to-use parallel computer architectures for AI applications. The field of parallel computation and computers for AI is in its infancy, but some significant ideas have appeared and initial practical experience has become available. The purpose of this book has been to collect in one volume contributions from several leading researchers and pioneers of AI that represent a sample of these ideas and experiences. This sample does not include all schools of thought nor contributions from all leading researchers, but it covers a relatively wide variety of views and topics and in this sense can be helpful in assessing the state ofthe art. We hope that the book will serve, at least, as a pointer to more specialized literature and that it will stimulate interest in the area of parallel AI processing. It has been a great pleasure and a privilege to cooperate with all contributors to this volume. They have my warmest thanks and gratitude. Mrs. Birgitta Knapp has assisted me in the editorial task and demonstrated a great deal of skill and patience. Janusz S. Kowalik vii INTRODUCTION Artificial intelligence (AI) computer programs can be very time-consuming.




Parallel Computing: Technology Trends


Book Description

The year 2019 marked four decades of cluster computing, a history that began in 1979 when the first cluster systems using Components Off The Shelf (COTS) became operational. This achievement resulted in a rapidly growing interest in affordable parallel computing for solving compute intensive and large scale problems. It also directly lead to the founding of the Parco conference series. Starting in 1983, the International Conference on Parallel Computing, ParCo, has long been a leading venue for discussions of important developments, applications, and future trends in cluster computing, parallel computing, and high-performance computing. ParCo2019, held in Prague, Czech Republic, from 10 – 13 September 2019, was no exception. Its papers, invited talks, and specialized mini-symposia addressed cutting-edge topics in computer architectures, programming methods for specialized devices such as field programmable gate arrays (FPGAs) and graphical processing units (GPUs), innovative applications of parallel computers, approaches to reproducibility in parallel computations, and other relevant areas. This book presents the proceedings of ParCo2019, with the goal of making the many fascinating topics discussed at the meeting accessible to a broader audience. The proceedings contains 57 contributions in total, all of which have been peer-reviewed after their presentation. These papers give a wide ranging overview of the current status of research, developments, and applications in parallel computing.




Parallel and High Performance Computing


Book Description

Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code




Parallel Computing


Book Description

ParCo2007 marks a quarter of a century of the international conferences on parallel computing that started in Berlin in 1983. The aim of the conference is to give an overview of the developments, applications and future trends in high-performance computing for various platforms.




Parallel Processing and Parallel Algorithms


Book Description

Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.




Artificial Intelligence in the Age of Neural Networks and Brain Computing


Book Description

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks




AAAI-94


Book Description

AAAI proceedings describe innovative concepts, techniques, perspectives, and observations that present promising research directions in artificial intelligence.




Introduction to Parallel Computing


Book Description

A comprehensive guide for students and practitioners to parallel computing models, processes, metrics, and implementation in MPI and OpenMP.