Parallel Power Electronics Filters in Three-Phase Four-Wire Systems


Book Description

This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems.




Adaptive Hybrid Active Power Filters


Book Description

This book introduces advanced thyristor-based shunt hybrid active power filters (HAPFs) for power quality improvement in power grids, which are characterized by a low dc-link operating voltage and a wide compensation range. This means they can overcome the high dc-link voltage requirement of conventional active power filters and the narrow compensation range problem of LC-coupling hybrid active power filters. Consisting of 10 chapters, the book discusses the principle, design, control and hardware implementation of thyristor-based hybrid active power filters. It covers 1) V-I characteristics, cost analysis, power loss and reliability studies of different power filters; 2) mitigation of the harmonic injection technique for thyristor-controlled parts; 3) nonlinear pulse width modulation (PWM) control; 4) parameter design methods; 5) minimum inverter capacity design; 6) adaptive dc-link voltage control; 7) unbalanced control strategy; 8) selective compensation techniques; and 9) the hardware prototype design of thyristor-based HAPFs, verified by simulation and experimental results. It enables readers to gain an understanding of the basic power electronics techniques applied in power systems as well as the advanced techniques for controlling, implementing and designing advanced thyristor-based HAPFs.




Power Quality in Microgrids: Issues, Challenges and Mitigation Techniques


Book Description

This book provides a brief insight of various challenges and its mitigation techniques in microgrid due to power quality (PQ) issues. The central concept of this book revolves around the PQ issues in microgrid. The main objective of this book is to make aware of the power and control engineers with different innovative techniques to mitigate the challenges due to PQ issues in microgrid. The topics covered in this book are PQ disturbances in microgrid and different recent and innovative schemes to mitigate them. The book emphasizes technical issues, theoretical background, and practical applications that drive postgraduates, researchers, and practicing engineers with right advanced skills, vision, and knowledge in finding microgrid power quality issues, various technical challenges and providing mitigation techniques for the future sustainable microgrids.




Power Electronics and Power Quality


Book Description

Power quality (PQ) is receiving more and more attention from consumers, distribution system operators, transmission system operators, and other entities related to electrical power systems. As PQ problems have direct implications for business productivity, causing high economic losses, the research and development monitoring technologies and power electronics solutions that ensure the PQ of the power systems are matters of utmost importance. This book is a collection of high quality papers published in the “Power Electronics and Power Quality” Special Issue of the journal Energies. It reflects on the latest investigations and the new trends in this field.







Power Electronics and Renewable Energy Systems


Book Description

The book is a collection of high-quality peer-reviewed research papers presented in the Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.




Selected Topics in Power, RF, and Mixed-Signal ICs


Book Description

Driven by advanced CMOS technology, power management units, RF transceivers, and sensors, analog and mixed-signal circuits can now be fully integrated with VLSI digital systems for applications ranging from mobile, internet-of-things (IoT), wearable, and implantable medical devices. Evidently, the circuit- and system-level innovations have pushed the device performance boundaries to become orders of magnitude higher, whilst keeping the same or even lower power consumption.Selected Topic in Power, RF, and Mixed-Signal ICs provides a practical overview and state-of-the-art advancements on several selected topics in the areas of power, RF, and mixed-signal integrated circuits and systems.Topics covered in the book include:• Very-High-Frequency DC-DC Switching Converters• Analog and Digital Low-Dropout Regulators• Analog and Digital Sub-Sampling Frequency Synthesizers• Hybrid ADC Architecture with Digital Assisted Techniques• CMOS Image Sensors and Their Biomedical Applications• CMOS Temperature Sensors• CMOS Millimeter-Wave Power Amplifiers• Zigbee/BLE Transmitter for IoT Applications




Power Electronics Handbook


Book Description

Power Electronics Handbook, Fourth Edition, brings together over 100 years of combined experience in the specialist areas of power engineering to offer a fully revised and updated expert guide to total power solutions. Designed to provide the best technical and most commercially viable solutions available, this handbook undertakes any or all aspects of a project requiring specialist design, installation, commissioning and maintenance services. Comprising a complete revision throughout and enhanced chapters on semiconductor diodes and transistors and thyristors, this volume includes renewable resource content useful for the new generation of engineering professionals. This market leading reference has new chapters covering electric traction theory and motors and wide band gap (WBG) materials and devices. With this book in hand, engineers will be able to execute design, analysis and evaluation of assigned projects using sound engineering principles and adhering to the business policies and product/program requirements. - Includes a list of leading international academic and professional contributors - Offers practical concepts and developments for laboratory test plans - Includes new technical chapters on electric vehicle charging and traction theory and motors - Includes renewable resource content useful for the new generation of engineering professionals




Modeling, Analysis, and Control of Smart Energy Systems


Book Description

The increasing demand for cleaner and more intelligent energy solutions poses a challenge that resonates across academic, engineering, and policymaking spheres. The complexity of integrating renewable energy sources, energy storage solutions, and advanced communication technologies demands a comprehensive understanding, rigorous analysis, and innovative control strategies. The academic community, in particular, seeks a guiding light through this intricate maze of evolving energy dynamics. Modeling, Analysis, and Control of Smart Energy Systems is a groundbreaking publication that offers more than theoretical exploration; it is a roadmap equipped with the knowledge and tools required to shape the future of energy systems. From laying conceptual foundations to unraveling real-world case studies, the book seamlessly bridges the gap between theory and application. Its comprehensive coverage of mathematical modeling, dynamic system analysis, intelligent control strategies, and the integration of renewable energy sources positions it as an authoritative reference for researchers, engineers, and policymakers alike.




Control of Power Inverters in Renewable Energy and Smart Grid Integration


Book Description

Integrating renewable energy and other distributed energy sources into smart grids, often via power inverters, is arguably the largest “new frontier” for smart grid advancements. Inverters should be controlled properly so that their integration does not jeopardize the stability and performance of power systems and a solid technical backbone is formed to facilitate other functions and services of smart grids. This unique reference offers systematic treatment of important control problems in power inverters, and different general converter theories. Starting at a basic level, it presents conventional power conversion methodologies and then ‘non-conventional’ methods, with a highly accessible summary of the latest developments in power inverters as well as insight into the grid connection of renewable power. Consisting of four parts – Power Quality Control, Neutral Line Provision, Power Flow Control, and Synchronisation – this book fully demonstrates the integration of control and power electronics. Key features include: the fundamentals of power processing and hardware design innovative control strategies to systematically treat the control of power inverters extensive experimental results for most of the control strategies presented the pioneering work on “synchronverters” which has gained IET Highly Commended Innovation Award Engineers working on inverter design and those at power system utilities can learn how advanced control strategies could improve system performance and work in practice. The book is a useful reference for researchers who are interested in the area of control engineering, power electronics, renewable energy and distributed generation, smart grids, flexible AC transmission systems, and power systems for more-electric aircraft and all-electric ships. This is also a handy text for graduate students and university professors in the areas of electrical power engineering, advanced control engineering, power electronics, renewable energy and smart grid integration.