Handbook of Financial Econometrics


Book Description

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections




Exponential Families of Stochastic Processes


Book Description

A comprehensive account of the statistical theory of exponential families of stochastic processes. The book reviews the progress in the field made over the last ten years or so by the authors - two of the leading experts in the field - and several other researchers. The theory is applied to a broad spectrum of examples, covering a large number of frequently applied stochastic process models with discrete as well as continuous time. To make the reading even easier for statisticians with only a basic background in the theory of stochastic process, the first part of the book is based on classical theory of stochastic processes only, while stochastic calculus is used later. Most of the concepts and tools from stochastic calculus needed when working with inference for stochastic processes are introduced and explained without proof in an appendix. This appendix can also be used independently as an introduction to stochastic calculus for statisticians. Numerous exercises are also included.




Applied Stochastic Processes and Control for Jump-Diffusions


Book Description

This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.




Applied Stochastic Differential Equations


Book Description

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.




2017 MATRIX Annals


Book Description

​MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in its second year, 2017: - Hypergeometric Motives and Calabi–Yau Differential Equations - Computational Inverse Problems - Integrability in Low-Dimensional Quantum Systems - Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of Gilbarg and Trudinger’s Book - Combinatorics, Statistical Mechanics, and Conformal Field Theory - Mathematics of Risk - Tutte Centenary Retreat - Geometric R-Matrices: from Geometry to Probability The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.




Stochastic Processes and Applications


Book Description

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.




Stochastic Systems in Merging Phase Space


Book Description

This book provides recent results on the stochastic approximation of systems by weak convergence techniques. General and particular schemes of proofs for average, diffusion, and Poisson approximations of stochastic systems are presented, allowing one to simplify complex systems and obtain numerically tractable models.The systems discussed in the book include stochastic additive functionals, dynamical systems, stochastic integral functionals, increment processes and impulsive processes. All these systems are switched by Markov and semi-Markov processes whose phase space is considered in asymptotic split and merging schemes. Most of the results from semi-Markov processes are new and presented for the first time in this book.




Financial Modelling with Jump Processes


Book Description

WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic




Mathematical Reviews


Book Description




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.