Partial Differential Equations in China


Book Description

In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.




Partial Differential Equations


Book Description

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.




Jacques Hadamard


Book Description

This book presents a fascinating story of the long life and great accomplishments of Jacques Hadamard (1865-1963), who was once called 'the living legend of mathematics'. As one of the last universal mathematicians, Hadamard's contributions to mathematics are landmarks in various fields. His life is linked with world history of the 20th century in a dramatic way. This work provides an inspiring view of the development of various branches of mathematics during the 19th and 20th centuries.Part I of the book portrays Hadamard's family, childhood and student years, scientific triumphs, and his personal life and trials during the first two world wars. The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and human rights. Also recounted are Hadamard's worldwide travels, his famous seminar, his passion for botany, his home orchestra, where he played the violin with Einstein, and his interest in the psychology of mathematical creativity. Hadamard's life is described in a readable and inviting way.The authors humorously weave throughout the text his jokes and the myths about him. They also movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters and documents create an authentic and colorful picture. The book contains over 300 photographs and illustrations. Part II of the book includes a lucid overview of Hadamard's enormous work, spanning over six decades. The authors do an excellent job of connecting his results to current concerns.While the book is accessible to beginners, it also provides rich information of interest to experts. Vladimir Mazya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de France's Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence was granted in recognition of Mazya and Shaposhnikova's book, ""Jacques Hadamard, A Universal Mathematician"", which is both an historical book about a great citizen and a scientific book about a great mathematician.




Carleman Estimates for Second Order Partial Differential Operators and Applications


Book Description

This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.




Order Structure and Topological Methods in Nonlinear Partial Differential Equations


Book Description

The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.




Fractional Partial Differential Equations And Their Numerical Solutions


Book Description

This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.




Partial Differential Equations


Book Description

The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.




Phase Transition Dynamics


Book Description

This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences. The main objectives of this book are to introduce a general principle of dynamic transitions for dissipative systems, to establish a systematic dynamic transition theory, and to explore the physical implications of applications of the theory to a range of problems in the nonlinear sciences. The basic philosophy of the theory is to search for a complete set of transition states, and the general principle states that dynamic transitions of all dissipative systems can be classified into three categories: continuous, catastrophic and random. The audience for this book includes advanced graduate students and researchers in mathematics and physics as well as in other related fields.




Physics and Partial Differential Equations


Book Description

Physics and Partial Differential Equations, The Complete Set bridges physics and applied mathematics in a manner that is easily accessible to readers with an undergraduate-level background in these disciplines. Each volume is also sold individually. Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as?electrodynamics;?fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics;?elastic, thermoelastic, and viscoelastic mechanics;?the kinetic theory of gases;?special relativity; and?quantum mechanics. Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including?the types and basic characteristics of the equations,?the behavior of solutions, and?some commonly used approaches to solving PDEs.




Harnack Inequalities for Stochastic Partial Differential Equations


Book Description

​In this book the author presents a self-contained account of Harnack inequalities and applications for the semigroup of solutions to stochastic partial and delayed differential equations. Since the semigroup refers to Fokker-Planck equations on infinite-dimensional spaces, the Harnack inequalities the author investigates are dimension-free. This is an essentially different point from the above mentioned classical Harnack inequalities. Moreover, the main tool in the study is a new coupling method (called coupling by change of measures) rather than the usual maximum principle in the current literature.