Partial Differential Equations in Ecology


Book Description

Partial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots.




Differential Equations and Applications in Ecology, Epidemics, and Population Problems


Book Description

Differential Equations and Applications in Ecology, Epidemics, and Population Problems is composed of papers and abstracts presented at the 1981 research conference on Differential Equations and Applications to Ecology, Epidemics, and Population Problems held at Harvey Mudd College. The reported researches consist of mathematics that is either a direct outgrowth from questions in population biology and biomathematics, or applicable to such questions. The content of this volume are collected in four groups. The first group addresses aspects of population dynamics that involve the interaction between spatial and temporal effects. The second group covers other questions in population dynamics and some other areas of biomathematics. The third group deals with topics in differential and functional differential equations that are continuing to find important applications in mathematical biology. The last group comprises of work on various aspects of differential equations and dynamical systems, not essentially motivated by biological applications. This book is valuable to students and researchers in theoretical biology and biomathematics, as well as to those interested in modern applications of differential equations.




Partial Differential Equations in Ecology


Book Description

Partial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots.







Differential Equations Models in Biology, Epidemiology and Ecology


Book Description

The past forty years have been the stage for the maturation of mathematical biolo~ as a scientific field. The foundations laid by the pioneers of the field during the first half of this century have been combined with advances in ap plied mathematics and the computational sciences to create a vibrant area of scientific research with established research journals, professional societies, deep subspecialty areas, and graduate education programs. Mathematical biology is by its very nature cross-disciplinary, and research papers appear in mathemat ics, biology and other scientific journals, as well as in the specialty journals devoted to mathematical and theoretical biology. Multiple author papers are common, and so are collaborations between individuals who have academic bases in different traditional departments. Those who seek to keep abreast of current trends and problems need to interact with research workers from a much broader spectrum of fields than is common in the traditional mono-culture disciplines. Consequently, it is beneficial to have occasions which bring together significant numbers of workers in this field in a forum that encourages the exchange of ideas and which leads to a timely publication of the work that is presented. Such an occasion occurred during January 13 to 16, 1990 when almost two hun dred research workers participated in an international conference on Differential Equations and Applications to Biology and Population Dynamics which was held in Claremont.




Elements of Mathematical Ecology


Book Description

Elements of Mathematical Ecology provides an introduction to classical and modern mathematical models, methods, and issues in population ecology. The first part of the book is devoted to simple, unstructured population models that ignore much of the variability found in natural populations for the sake of tractability. Topics covered include density dependence, bifurcations, demographic stochasticity, time delays, population interactions (predation, competition, and mutualism), and the application of optimal control theory to the management of renewable resources. The second part of this book is devoted to structured population models, covering spatially-structured population models (with a focus on reaction-diffusion models), age-structured models, and two-sex models. Suitable for upper level students and beginning researchers in ecology, mathematical biology and applied mathematics, the volume includes numerous clear line diagrams that clarify the mathematics, relevant problems thoughout the text that aid understanding, and supplementary mathematical and historical material that enrich the main text.







Mathematical Ecology


Book Description

There isprobably no more appropriate location to hold a course on mathematical ecology than Italy, the countryofVito Volterra, a founding father ofthe subject. The Trieste 1982Autumn Course on Mathematical Ecology consisted of four weeksofvery concentrated scholasticism and aestheticism. The first weeks were devoted to fundamentals and principles ofmathematicalecology. A nucleusofthe material from the lectures presented during this period constitutes this book. The final week and a half of the Course was apportioned to the Trieste Research Conference on Mathematical Ecology whose proceedings have been published as Volume 54, Lecture Notes in Biomathematics, Springer-Verlag. The objectivesofthe first portionofthe course wereambitious and, probably, unattainable. Basic principles of the areas of physiological, population, com munitY, and ecosystem ecology that have solid ecological and mathematical foundations were to be presented. Classical terminology was to be introduced, important fundamental topics were to be developed, some past and some current problems of interest were to be presented, and directions for possible research were to be provided. Due to time constraints, the coverage could not be encyclopedic;many areas covered already have merited treatises of book length. Consequently, preliminary foundation material was covered in some detail, but subject overviewsand area syntheseswerepresented when research frontiers were being discussed. These lecture notes reflect this course philosophy.




Systems of Nonlinear Partial Differential Equations


Book Description

'Et moi ..., si j'avait su comment en reveru.r, One service mathematics has rendered the je n'y scrais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.




Transport Equations in Biology


Book Description

This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.