Particle-Based Methods


Book Description

The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.




Particle-Based Methods


Book Description

The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.













Proceedings of the Tenth International Conference on Calorimetry in Particle Physics


Book Description

Annotation The International Conference on Calorimetry in Particle Physics has become the major forum for state-of-the-art developments of calorimetry techniques. The tenth conference was attended by about 150 physicists from 20 countries and covered all aspects of calorimetric particle detection and measurements, with emphasis on high energy physics experiments as well as experiments in nuclear physics and astrophysics.The proceedings contain three parts: introductory papers, contributed papers and a summary. The introductory papers start with a historical review of the development of calorimetry technology, and continue with overviews of the current status of calorimetry in high energy physics and astrophysics, which are followed by discussions on calorimetry in future accelerator facilities, such as linear colliders and the Super B Factory. A "hot" technology regarding the "energy flow concept" is also dealt with




Meshfree and Particle Methods


Book Description

Provides thorough coverage of essential concepts and state-of-the-art developments in the field Meshfree and Particle Methods is the first book of its kind to combine comprehensive, up-to-date information on the fundamental theories and applications of meshfree methods with systematic guidance on practical coding implementation. Broad in scope and content, this unique volume provides readers with the knowledge necessary to perform research and solve challenging problems in nearly all fields of science and engineering using meshfree computational techniques. The authors provide detailed descriptions of essential issues in meshfree methods, as well as specific techniques to address them, while discussing a wide range of subjects and use cases. Topics include approximations in meshfree methods, nonlinear meshfree methods, essential boundary condition enforcement, quadrature in meshfree methods, strong form collocation methods, and more. Throughout the book, topics are integrated with descriptions of computer implementation and an open-source code (with a dedicated chapter for users) to illustrate the connection between the formulations discussed in the text and their real-world implementation and application. This authoritative resource: Explains the fundamentals of meshfree methods, their constructions, and their unique capabilities as compared to traditional methods Features an overview of the open-source meshfree code RKPM2D, including code and numerical examples Describes all the variational concepts required to solve scientific and engineering problems using meshfree methods such as Nitsche’s method and the Lagrange multiplier method Includes comprehensive reviews of essential boundary condition enforcement, quadrature in meshfree methods, and nonlinear aspects of meshfree analysis Discusses other Galerkin meshfree methods, strong form meshfree methods, and their comparisons Meshfree and Particle Methods: Fundamentals and Applications is the perfect introduction to meshfree methods for upper-level students in advanced numerical analysis courses, and is an invaluable reference for professionals in mechanical, aerospace, civil, and structural engineering, and related fields, who want to understand and apply these concepts directly, or effectively use commercial and other production meshfree and particle codes in their work.




Smoothed Particle Hydrodynamics


Book Description

This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.