Fundamentals of Gas Particle Flow


Book Description

Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a rotating gas, in a Prandtl-Meyer expansion, and in an oscillating flow. The remaining chapters of the book deal with the thermodynamics of gas-particle mixtures, steady flow through ducts, pressure waves, gas-particle jets, boundary layer, and momentum transfer. The experimental techniques included in this book present the powder feeders, the instrumentation on particle flow rate, velocity, concentration and temperature, and the measurement of the particle drag coefficient in a shock tube.




Turbulent Particle-Laden Gas Flows


Book Description

This book presents results of experimental and theoretical studies of "gas-solid particles" turbulent two-phase flows. It analyzes the characteristics of heterogeneous flows in channels (pipes), as well as those in the vicinity of the critical points of bodies subjected to flow and in the boundary layer developing on their surface. Coverage also treats in detail problems of physical simulation of turbulent gas flows which carry solid particles.




Principles of Gas-Solid Flows


Book Description

Discusses fundamental principles of gas-solid flows and their applications, and includes numerous examples and homework problems.




Granular Dynamics


Book Description

The aim of this handbook is to provide a comprehensive summary of the field of Particle Science and Technology which includes most updated research findings and their applications in different industries. It is hoped that the consolidated knowledge described by this handbook will inspire more innovative ideas to bring the field forward. The size of the particles may range from nanometer scale, as in pigments or aerosols, to that of mined or quarried materials. The handbook will cover the topics ranging from the formation and synthesis, packing and flow, and application of these particles. Each part is explored in great details in different sections and chapters, it is written by a pool of international well known scholars, as well as industrial experts. The handbook fully reflects the state of the art in Particle Science and Technology




Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice


Book Description

"This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.




Multiphase Flow and Fluidization


Book Description

Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. - Treats fluidization as a branch of transport phenomena - Demonstrates how to do transient, multidimensional simulation of multiphase processes - The first book to apply kinetic theory to flow of particulates - Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed - Explains the origin of bubbles and the concept of critical granular flow - Presents clearly written exercises at the end of each chapter to facilitate understanding and further study




Introduction to Computational Mass Transfer


Book Description

This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-Stokes equation using the lattice-Boltzmann model. This book is a valuable resource for researchers and graduate students in the fields of computational methodologies for the numerical simulation of fluid dynamics, mass and/or heat transfer involved in separation processes (distillation, absorption, extraction, adsorption etc.), chemical/biochemical reactions, and other related processes.




Gas-Particle and Granular Flow Systems


Book Description

Gas-Particle and Granular Flow Systems: Coupled Numerical Methods and Applications breaks down complexities, details numerical methods (including basic theory, modeling and techniques in programming), and provides researchers with an introduction and starting point to each of the disciplines involved. As the modeling of gas-particle and granular flow systems is an emerging interdisciplinary field of study involving mathematics, numerical methods, computational science, and mechanical, chemical and nuclear engineering, this book provides an ideal resource for new researchers who are often intimidated by the complexities of fluid-particle, particle-particle, and particle-wall interactions in many disciplines. Presents the most recent advances in modeling of gas-particle and granular flow systems Features detailed and multidisciplinary case studies at the conclusion of each chapter to underscore key concepts Discusses coupled methods of particle and granular flow systems theory and includes advanced modeling tools and numerical techniques