Particle Swarm Optimization


Book Description

This is the first book devoted entirely to Particle Swarm Optimization (PSO), which is a non-specific algorithm, similar to evolutionary algorithms, such as taboo search and ant colonies. Since its original development in 1995, PSO has mainly been applied to continuous-discrete heterogeneous strongly non-linear numerical optimization and it is thus used almost everywhere in the world. Its convergence rate also makes it a preferred tool in dynamic optimization.




Particle Swarm Optimisation


Book Description

Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a globally convergent algorithm. In Particle Swarm Optimisation: Classical and Quantum Perspectives, the authors introduce their concept of quantum-behaved particles inspired by quantum mechanics, which leads to the quantum-behaved particle swarm optimisation (QPSO) algorithm. This globally convergent algorithm has fewer parameters, a faster convergence rate, and stronger searchability for complex problems. The book presents the concepts of optimisation problems as well as random search methods for optimisation before discussing the principles of the PSO algorithm. Examples illustrate how the PSO algorithm solves optimisation problems. The authors also analyse the reasons behind the shortcomings of the PSO algorithm. Moving on to the QPSO algorithm, the authors give a thorough overview of the literature on QPSO, describe the fundamental model for the QPSO algorithm, and explore applications of the algorithm to solve typical optimisation problems. They also discuss some advanced theoretical topics, including the behaviour of individual particles, global convergence, computational complexity, convergence rate, and parameter selection. The text closes with coverage of several real-world applications, including inverse problems, optimal design of digital filters, economic dispatch problems, biological multiple sequence alignment, and image processing. MATLAB®, Fortran, and C++ source codes for the main algorithms are provided on an accompanying downloadable resources. Helping you numerically solve optimisation problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. It not only explains how to use the algorithms, but also covers advanced topics that establish the groundwork for understanding.




Applying Particle Swarm Optimization


Book Description

This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz’s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfolio’s decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz’s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.




Encyclopedia of Machine Learning


Book Description

This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.




Optimization for Machine Learning


Book Description

Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.




New Optimization Techniques in Engineering


Book Description

Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines – presenting both the background of the subject area and the techniques for solving the problems.




Particle Swarm Optimization and Intelligence: Advances and Applications


Book Description

"This book presents the most recent and established developments of Particle swarm optimization (PSO) within a unified framework by noted researchers in the field"--Provided by publisher.




Computational Intelligence in Power Engineering


Book Description

Computational Intelligence (CI) is one of the most important powerful tools for research in the diverse fields of engineering sciences ranging from traditional fields of civil, mechanical engineering to vast sections of electrical, electronics and computer engineering and above all the biological and pharmaceutical sciences. The existing field has its origin in the functioning of the human brain in processing information, recognizing pattern, learning from observations and experiments, storing and retrieving information from memory, etc. In particular, the power industry being on the verge of epoch changing due to deregulation, the power engineers require Computational intelligence tools for proper planning, operation and control of the power system. Most of the CI tools are suitably formulated as some sort of optimization or decision making problems. These CI techniques provide the power utilities with innovative solutions for efficient analysis, optimal operation and control and intelligent decision making. This edited volume deals with different CI techniques for solving real world Power Industry problems. The technical contents will be extremely helpful for the researchers as well as the practicing engineers in the power industry.




Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition


Book Description

For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach. After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in challenging application domains, focusing on the state of the art of multidimensional extensions such as global convergence in particle swarm optimization, dynamic data clustering, evolutionary neural networks, biomedical applications and personalized ECG classification, content-based image classification and retrieval, and evolutionary feature synthesis. The content is characterized by strong practical considerations, and the book is supported with fully documented source code for all applications presented, as well as many sample datasets. The book will be of benefit to researchers and practitioners working in the areas of machine intelligence, signal processing, pattern recognition, and data mining, or using principles from these areas in their application domains. It may also be used as a reference text for graduate courses on swarm optimization, data clustering and classification, content-based multimedia search, and biomedical signal processing applications.




Handbook of Swarm Intelligence


Book Description

From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more. It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques. In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe. It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS). With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving.