Particles in Contact


Book Description

This book contains the latest scientific findings in the area of granular materials, their physical fundamentals and applications in particle technology focused on the description of interactions of fine adhesive particles.In collaboration between physicists, chemists, mathematicians and mechanics and process engineers from 24 universities, new theories and methods for multiscale modeling and reliable measurement of particles are developed, with a focus on:• Basic physical-chemical processes in the contact zone: particle-particle and particle-wall contacts,• Particle collisions and their dynamics• Constitutive material laws for particle systems on the macro level.




Granular Dynamics, Contact Mechanics and Particle System Simulations


Book Description

This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.




Physics of Dry Granular Media


Book Description

Dry granular materials, such as sand, sugar and powders, can be poured into a container like a liquid and can also form a pile, resisting gravity like a solid, which is why they can be regarded as a fourth state of matter, neither solid nor liquid. This book focuses on defining the physics of dry granular media in a systematic way, providing a collection of articles written by recognised experts. The physics of this field is new and full of challenges, but many questions (such as kinetic theories, plasticity, continuum and discrete modelling) also require the strong participation of mechanical and chemical engineers, soil mechanists, geologists and astrophysicists. The book gathers into a single volume the relevant concepts from all these disciplines, enabling the reader to gain a rapid understanding of the foundations, as well as the open questions, of the physics of granular materials. The contributors have been chosen particularly for their ability to explain new concepts, making the book attractive to students or researchers contemplating a foray into the field. The breadth of the treatment, on the other hand, makes the book a useful reference for scientists who are already experienced in the subject.




Particles at Fluid Interfaces


Book Description

Particles at Fluid Interfaces encompasses the processes and formulations that involve the stabilisation of fluid interfaces by adsorbed particles. The prevalence of these multiphase materials underpins their use in a broad range of industries from personal care and food technology to oil and mineral processing. The stabilisation conferred by the adsorbed particles can be transient as found in froth flotation or long-lived as occurs within Pickering Emulsions. The particles can range in size from nanoparticles to millimetre-sized particles, and cover a spectrum from collapsed proteins, polymeric colloids of controlled size and shape to high dispersity mineral particles.







Transactions


Book Description







Particles at Fluid Interfaces and Membranes


Book Description

In the small world of micrometer to nanometer scale many natural and industrial processes include attachment of colloid particles (solid spheres, liquid droplets, gas bubbles or protein macromolecules) to fluid interfaces and their confinement in liquid films. This may lead to the appearance of lateral interactions between particles at interfaces, or between inclusions in phospholipid membranes, followed eventually by the formation of two-dimensional ordered arrays. The book is devoted to the description of such processes, their consecutive stages, and to the investigation of the underlying physico-chemical mechanisms. The first six chapters give a concise but informative introduction to the basic knowledge in surface and colloid science, which includes both traditional concepts and some recent results. Chapters 1 and 2 are devoted to the basic theory of capillarity, kinetics of surfactant adsorption, shapes of axisymmetric fluid interfaces, contact angles and line tension. Chapters 3 and 4 present a generalization of the theory of capillarity to the case, in which the variation of the interfacial (membrane) curvature contributes to the total energy of the system. The generalized Laplace equation is applied to determine the configurations of free and adherent biological cells. Chapters 5 and 6 are focused on the role of thin liquid films and hydrodynamic factors in the attachment of solid and fluid particles to an interface. Surface forces of various physical nature are presented and their relative importance is discussed. Hydrodynamic interactions of a colloidal particle with an interface (or another particle) are also considered.Chapters 7 to 10 are devoted to the theoretical foundation of various kinds of capillary forces. When two particles are attached to the same interface (membrane), capillary interactions, mediated by the interface or membrane, appear between them. Two major kinds of capillary interactions are described: (i) capillary immersion force related to the surface wettability (Chapter 7), (ii) capillary flotation force originating from interfacial deformations due to particle weight (Chapter 8). Special attention is paid to the theory of capillary immersion forces between particles entrapped in spherical liquid films (Chapter 9). A generalization of the theory of immersion forces allows one to describe membrane-mediated interactions between protein inclusions into a lipid bilayer (Chapter 10).Chapter 11 is devoted to the theory of the capillary bridges and the capillary-bridge forces, whose importance has been recognized in phenomena like consolidation of granules and soils, wetting of powders, capillary condensation, long-range hydrophobic attraction, etc. The nucleation of capillary bridges is also examined.Chapter 12 considers solid particles, which have an irregular wetting perimeter upon attachment to a fluid interface. The undulated contact line induces interfacial deformations, which engender a special lateral capillary force between the particles. The latter contributes to the dilatational and shear elastic moduli of particulate adsorption monolayers.Chapter 13 describes how lateral capillary forces, facilitated by convective flows and some specific and non-specific interactions, can lead to the aggregation and ordering of various particles at fluid interfaces or in thin liquid films. Recent results on fabricating two-dimensional (2D) arrays from micrometer and sub-micrometer latex particles, as well as 2D crystals from proteins and protein complexes, are reviewed. Chapter 14 presents applied aspects of the particle-surface interaction in antifoaming and defoaming. The mechanisms of antifoaming action involve as a necessary step the entering of an antifoam particle at the air-water interface. The considered mechanisms indicate the factors for control of foaminess.




Multiphase Flows with Droplets and Particles, Third Edition


Book Description

Multiphase Flows with Droplets and Particles provides an organized, pedagogical study of multiphase flows with particles and droplets. This revised edition presents new information on particle interactions, particle collisions, thermophoresis and Brownian movement, computational techniques and codes, and the treatment of irregularly shaped particles. An entire chapter is devoted to the flow of nanoparticles and applications of nanofluids. Features Discusses the modelling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises and a Solutions Manual for adopting instructors. Designed to complement a graduate course in multiphase flows, the book can also serve as a supplement in short courses for engineers or as a stand-alone reference for engineers and scientists who work in this area.