Reducing Particulate Emissions in Gasoline Engines


Book Description

For years, diesel engines have been the focus of particulate matter emission reductions. Now, however, modern diesel engines emit less particles than a comparable gasoline engine. This transformation necessitates an introduction of particulate reduction strategies for the gasoline-powered vehicle. Many strategies can be leveraged from diesel engines, but new combustion and engine control technologies will be needed to meet the latest gasoline regulations across the globe. Particulate reduction is a critical health concern in addition to the regulatory requirements. This is a vital issue with real-world implications. Reducing Particulate Emissions in Gasoline Engines encompasses the current strategies and technologies used to reduce particulates to meet regulatory requirements and curtail health hazards - reviewing principles and applications of these techniques. Highlights and features in the book include: Gasoline particulate filter design, function and applications Coated and uncoated three way catalyst design and integration Measurement of gasoline particulate matter emission, both laboratory and PEMS The goal is to provide a comprehensive assessment of gasoline particulate emission control to meet regulatory and health requirements - appealing to calibration, development and testing engineers alike.




Engine Exhaust Particulates


Book Description

This book provides a comparative analysis of both diesel and gasoline engine particulates, and also of the emissions resulting from the use of alternative fuels. Written by respected experts, it offers comprehensive insights into motor vehicle particulates, their formation, composition, location, measurement, characterisation and toxicology. It also addresses exhaust-gas treatment and legal, measurement-related and technological advancements concerning emissions. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.




Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance


Book Description

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. - Provides a fully updated reference with significant technological advances and developments in the sector - Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements - Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry




Advances in Biorefineries


Book Description

Biorefineries are an essential technology in converting biomass into biofuels or other useful materials. Advances in Biorefineries provides a comprehensive overview of biorefining processing techniques and technologies, and the biofuels and other materials produced. Part one focuses on methods of optimizing the biorefining process and assessing its environmental and economic impact. It also looks at current and developing technologies for producing value-added materials. Part two goes on to explore these materials with a focus on biofuels and other value-added products. It considers the properties, limitations, and practical applications of these products and how they can be used to meet the increasing demand for renewable and sustainable fuels as an alternative to fossil fuels. Advances in Biorefineries is a vital reference for biorefinery/process engineers, industrial biochemists/chemists, biomass/waste scientists and researchers and academics in the field. - A comprehensive and systematic reference on the advanced biomass recovery and conversion processes used in biorefineries - Reviews developments in biorefining processes - Discusses the wide range of value-added products from biorefineries, from biofuel to biolubricants and bioadhesives




Internal Combustion Engines


Book Description

This book contains the papers of the Internal Combustion Engines: Performance fuel economy and emissions conference, in the IMechE bi-annual series, held on the 29th and 30th November 2011. The internal combustion engine is produced in tens of millions per year for applications as the power unit of choice in transport and other sectors. It continues to meet both needs and challenges through improvements and innovations in technology and advances from the latest research. These papers set out to meet the challenges of internal combustion engines, which are greater than ever. How can engineers reduce both CO2 emissions and the dependence on oil-derivate fossil fuels? How will they meet the future, more stringent constraints on gaseous and particulate material emissions as set by EU, North American and Japanese regulations? How will technology developments enhance performance and shape the next generation of designs? This conference looks closely at developments for personal transport applications, though many of the drivers of change apply to light and heavy duty, on and off highway, transport and other sectors. - Aimed at anyone with interests in the internal combustion engine and its challenges - The papers consider key questions relating to the internal combustion engine







Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine


Book Description

Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.




Automotive Spark-Ignited Direct-Injection Gasoline Engines


Book Description

The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.