Turbulent Mixing of Passive Scalars at High Schmidt Number


Book Description

A numerical study of fundamental aspects of turbulent mixing has been performed, with emphasis on the behavior of passive scalars of low molecular diffusivity (high Schmidt number Sc). Direct Numerical Simulation is used to simulate incompressible, stationary and isotropic turbulence carried out at high grid resolution. Data analyses are carried out by separate parallel codes using up to 10243 grid points for Taylor-scale Reynolds number (R(lambda) up to 390 and Sc up to 1024. Schmidt number of order 1000 is simulated using a double-precision parallel code in a turbulent flow at a low Reynolds number of R (lambda) 8 to reduce computational cost to achievable level. The results on the scalar spectrum at high Schmidt numbers appear to have a ...







IUTAM Symposium on Turbulent Mixing and Combustion


Book Description

The goals of the Symposium were to draw together researchers in turbulence and combustion so as to highlight advances and challenge the boundaries to our understanding of turbulent mixing and combus tion from both experimental and simulation perspectives; to facilitate cross-fertilization between leaders in these two fields. These goals were noted to be important given that turbulence itself is viewed as the last great problem in classical physics and the addition of chemical reaction amplifies the difficulties enormously. The papers that have been included here reflect the richness of our subject. Turbulence is rich and complex in its own right. And, its inner structure, hidden in the morass of scales, large and small, can dominate transport. Earlier IUTAM Symposia have considered this field, Eddy Structure Identification in Free Turbulent Flows, Bonnet and Glauser (eds) 1992 and Simulation and Identification of Organized Structures in Flows, Sorensen, Hopfinger and Aubry (eds) 1997. The combustion community is well served by its specialized events, most notable is the bi annual International Combustion Symposium, held under the auspices of the Combustion Institute. Mixing is often considered somewhere in between these two. This broad landscape was addressed in this Sym posium in a somewhat temporal linear fashion of increasing complexity. The lectures considered the many challenges posed by adding one ele ment to the base formed by others: turbulence and turbulent mixing in the absence of combustion through to turbulent mixing dominated by chemistry and combustion.




Coarse Grained Simulation and Turbulent Mixing


Book Description

Small-scale turbulent flow dynamics is traditionally viewed as universal and as enslaved to that of larger scales. In coarse grained simulation (CGS), large energy-containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale (SGS) effects are modeled. Coarse Grained Simulation and Turbulent Mixing reviews our understanding of CGS. Beginning with an introduction to the fundamental theory the discussion then moves to the crucial challenges of predictability. Next, it addresses verification and validation, the primary means of assessing accuracy and reliability of numerical simulation. The final part reports on the progress made in addressing difficult non-equilibrium applications of timely current interest involving variable density turbulent mixing. The book will be of fundamental interest to graduate students, research scientists, and professionals involved in the design and analysis of complex turbulent flows.