Path Integral Quantization and Stochastic Quantization


Book Description

In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two formalisms make up the Hamiltonian.formalism of quantum me chanics.




Stochastic Quantization


Book Description

This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.




Path Integrals in Physics


Book Description

Path Integrals in Physics: Volume I, Stochastic Processes and Quantum Mechanics presents the fundamentals of path integrals, both the Wiener and Feynman type, and their many applications in physics. Accessible to a broad community of theoretical physicists, the book deals with systems possessing a infinite number of degrees in freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. It describes in detail various applications, including systems with Grassmann variables. Each chapter is self-contained and can be considered as an independent textbook. The book provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.




Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets


Book Description

Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.




Path Integrals in Physics


Book Description

The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.




Quantum Theory of Many-variable Systems and Fields


Book Description

These lecture notes are based on special courses on Field Theory and Statistical Mechanics given for graduate students at the City College of New York. It is an ideal text for a one-semester course on Quantum Field Theory.




Path Integrals in Physics


Book Description

The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.




Stochastic Quantization


Book Description

This collection of selected reprints presents as broad a selection as possible, emphasizing formal and numerical aspects of Stochastic Quantization. It reviews and explains the most important concepts placing selected reprints and crucial papers into perspective and compact form.




Realistic Interpretation of Quantum Mechanics


Book Description

According to Einstein “a physical theory should offer a picture of reality”. This made him frustrated and dissatisfied with the standard interpretation (or lack thereof) of quantum theory, since attempts to get a “picture” from it soon led to contradictions like the wave-particle duality. This book provides such a picture of the quantum world, that is, a “realistic interpretation”. Of course, this needs to be done in a way that is compatible with today’s experimental evidence, including the experiments that seem to contradict (local) realism. The book also offers a personal view on the meaning of general relativity and its relation with quantum mechanics, proposing a new perspective for dark energy, dark matter and stellar collapse. It is the result and a summary of the author’s extensive research on the foundations of quantum mechanics, spanning more than 50 years.




Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xx International Conference (In 2 Volumes)


Book Description

This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.