Path Integrals and Coherent States of SU(2) and SU(1,1)


Book Description

The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent states, formulation of coherent path integrals for spin and unitary spin, and semiclassical quantization are presented. Applications are made to the study of quantum fluctuation, the nonlinear field model and phase holonomy.The final chapters present the theory of the SU(1, 1) coherent states and their applications. The radial coulomb problem, the Morse oscillator, and the large-N approximation are discussed. Applications to problems in quantum optics such as squeezed states, interaction with the squeezed vacuum states, and phase operator formalism are also included.This book will be useful as an introduction to the subject as well as a valuable work of reference.




Path Integrals From Pev To Tev: 50 Years After Feynman's Paper - Proceedings Of The Sixth International Conference


Book Description

This book contains the invited contributions to the 6th International Conference on Path Integrals from peV to TeV, held in Florence in 1998. The conference, devoted to functional integration, brought together many physicists with interests ranging from elementary particles to nuclear, solid state, liquid state, polymer and complex systems physics. The variety of topics is reflected in the book, which is a unique collection of papers on manifold applications of functional methods in several areas of physics.




Path Integrals in Physics


Book Description

Path Integrals in Physics: Volume I, Stochastic Processes and Quantum Mechanics presents the fundamentals of path integrals, both the Wiener and Feynman type, and their many applications in physics. Accessible to a broad community of theoretical physicists, the book deals with systems possessing a infinite number of degrees in freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. It describes in detail various applications, including systems with Grassmann variables. Each chapter is self-contained and can be considered as an independent textbook. The book provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.




Path Integrals


Book Description

This proceedings volume contains selected talks and poster presentations from the 9th International Conference on Path Integrals ? New Trends and Perspectives, which took place at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, during the period September 23?28, 2007. Continuing the well-developed tradition of the conference series, the present status of both the different techniques of path integral calculations and their diverse applications to many fields of physics and chemistry is reviewed. This is reflected in the main topics in this volume, which range from more traditional fields such as general quantum physics and quantum or statistical field theory through technical aspects like Monte Carlo simulations to more modern applications in the realm of quantum gravity and astrophysics, condensed matter physics with topical subjects such as Bose?Einstein condensation or quantum wires, biophysics and econophysics. All articles are successfully tied together by the common method of path integration; as a result, special methodological advancements in one topic could be transferred to other topics.




Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae


Book Description

In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.




Mathematical Methods For Physicists


Book Description

The book covers different aspects of mathematical methods for Physics. It is designed for graduate courses but a part of it can also be used by undergraduate students. The leitmotiv of the book is the search for a common mathematical framework for a wide class of apparently disparate physical phenomena. An important role, within this respect, is provided by a nonconventional formulation of special functions and polynomials. The proposed methods simplify the understanding of the relevant technicalities and yield a unifying view to their applications in Physics as well as other branches of science.The chapters are not organized through the mathematical study of specific problems in Physics, rather they are suggested by the formalism itself. For example, it is shown how the matrix formalism is useful to treat ray Optics, atomic systems evolution, QED, QCD and Feynman diagrams. The methods presented here are simple but rigorous. They allow a fairly substantive tool of analysis for a variety of topics and are useful for beginners as well as the more experienced researchers.




Coherent States: Past, Present And Future - Proceedings Of The International Symposium


Book Description

The book consists of lectures delivered at the International Symposium on Coherent States: Past, Present, and Future, held in Oak Ridge, Tennessee, June 14 - 17 1993. Both theoretical and experimental subjects are treated. Theoretical subjects dealt with include quantum optics, quantum chaos, condensed matter physics, nuclear physics, high energy physics and foundational issues such as quantum-classical connections and various semiclassical quantization schemes. Experimental topics dealt with principally concern atomic and molecular physics and especially lasers. Topics related to coherent states, most notably wavelets, are also included.




Theory of Nonclassical States of Light


Book Description

The term 'nonclassical states' refers to the quantum states that cannot be produced in the usual sources of light, such as lasers or lamps, rather than those requiring more sophisticated apparatus for their production. Theory of Non-classical States of Light describes the current status of the theory of nonclassical states of light including many n




Classical And Quantum Systems: Foundations And Symmetries - Proceedings Of The 2nd International Wigner Symposium


Book Description

The Wigner Symposium series is focussed on fundamental problems and new developments in physics and their experimental, theoretical and mathematical aspects. Particular emphasis is given to those topics which have developed from the work of Eugene P Wigner. The 2nd Wigner symposium is centered around notions of symmetry and geometry, the foundations of quantum mechanics, quantum optics and particle physics. Other fields like dynamical systems, neural networks and physics of information are also represented.This volume brings together 19 plenary lectures which survey latest developments and more than 130 contributed research reports.




Quantum Field Theory And Its Macroscopic Manifestations: Boson Condensation, Ordered Patterns And Topological Defects


Book Description

Quantum dynamics underlies macroscopic systems exhibiting some kind of ordering, such as superconductors, ferromagnets and crystals. Even large scale structures in the Universe and ordering in biological systems appear to be the manifestation of microscopic dynamics ruling their elementary components. The scope of this book is to answer questions such as: how it happens that the mesoscopic/macroscopic scale and stability characterizing those systems are dynamically generated out of the microscopic scale of fluctuating quantum components; how quantum particles coexist and interact with classically behaving macroscopic objects, e.g. vortices, magnetic domains and other topological defects. The quantum origin of topological defects and their interaction with quanta is a crucial issue for the understanding of symmetry breaking phase transitions and structure formation in a wide range of systems from condensed matter to cosmology. Deliberately not discussing other important problems, primarily renormalization problems, this book provides answers to such questions in a unitary, self-consistent physical and mathematical framework, which makes it unique in the panorama of existing texts on a similar subject. Crystals, ferromagnets and superconductors appear to be macroscopic quantum systems, i.e. their macroscopic properties cannot be explained without recourse to the underlying quantum dynamics. Recognizing that quantum field dynamics is not confined to the microscopic world is one of the achievements of this book, also marking its difference from other texts. The combined use of algebraic methods, and operator and functional formalism constitutes another distinctive, valuable feature./a