Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (5th Edition)


Book Description

This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena.Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders.Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions.




Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets


Book Description

This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman -- Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbationexpansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chem-Simons theory of particles with fractional statistics (anyohs) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black -- Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.




Introduction To Quantum Mechanics: Schrodinger Equation And Path Integral (Second Edition)


Book Description

This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrödinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions.In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introduction to chemical bonds, the chapter on periodic potentials has been supplemented by a section on the band theory of metals and semiconductors, and in the chapter on large order behavior a section has been added illustrating the success of converging factors in the evaluation of asymptotic expansions. Detailed calculations permit the reader to follow every step.




Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition)


Book Description

This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.




Quantum Theory


Book Description

Quantum Theory: Density, Condensation, and Bonding presents in a unitary manner the main actual theories of matter, mainly the density function theory (DFT) for fermions, the Bose-Einstein condensation (BEC) for bosons, and chemical bonding as a special realization of the first two so-called mixed fermionic-bosonic states. The book covers the moder




Advances in Financial Risk Management


Book Description

The latest research on measuring, managing and pricing financial risk. Three broad perspectives are considered: financial risk in non-financial corporations; in financial intermediaries such as banks; and finally within the context of a portfolio of securities of different credit quality and marketability.




Advanced Quantum Mechanics


Book Description

This book introduces quantum mechanics from the discovery of photons to field quantization, relativistic quantum fields and photon-matter interactions. It emphasizes the role of quantum theory for an understanding of materials and electromagnetic radiation.




The Palgrave Handbook of Quantum Models in Social Science


Book Description

It is not intuitive to accept that there exists a link between quantum physical systems and cognitive systems. However, recent research has shown that cognitive systems and collective (social) systems, including biology, exhibit uncertainty which can be successfully modelled with quantum probability. The use of such probability allows for the modelling of situations which typically violate the laws of classical probability. The Palgrave Handbook of Quantum Models in Social Science is is a unique volume that brings together contributions from leading experts on key topics in this new and emerging field. Completely self-contained, it begins with an introductory section which gathers all the fundamental notions required to be able to understand later chapters. The handbook then moves on to address some of the latest research and applications for quantum methods in social science disciplines, including economics, politics and psychology. It begins with the issue of how the quantum mechanical framework can be applied to economics. Chapters devoted to this topic range from how Fisher information can be argued to play a role in economics, to the foundations and application of quantum game theory. The handbook then progresses in considering how belief states can be updated with the theory of quantum measurements (and also with more general methods). The practical use of the Hilbert space (and Fock space) in decision theory is then introduced, and open quantum systems are also considered. The handbook also treats a model of neural oscillators that reproduces some of the features of quantum cognition. Other contributions delve into causal reasoning using quantum Bayes nets and the role of quantum probability in modelling so called affective evaluation. The handbook is rounded off with two chapters which discuss the grand challenges which lie ahead of us. How can the quantum formalism be justified in social science and is the traditional quantum formalism too restrictive? Finally, a question is posed: whether there is a necessary role for quantum mathematical models to go beyond physics. This book will bring the latest and most cutting edge research on quantum theory to social science disciplines. Students and researchers across the discipline, as well as those in the fields of physics and mathematics will welcome this important addition to the literature.




Thermodynamics and Statistical Mechanics of Macromolecular Systems


Book Description

Reviewing statistical mechanics concepts for analysis of macromolecular structure formation processes, for graduate students and researchers in physics and biology.




Financial Econometrics and Empirical Market Microstructure


Book Description

In the era of Big Data our society is given the unique opportunity to understand the inner dynamics and behavior of complex socio-economic systems. Advances in the availability of very large databases, in capabilities for massive data mining, as well as progress in complex systems theory, multi-agent simulation and computational social science open the possibility of modeling phenomena never before successfully achieved. This contributed volume from the Perm Winter School address the problems of the mechanisms and statistics of the socio-economics system evolution with a focus on financial markets powered by the high-frequency data analysis. ​