The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References




The Liver


Book Description

Bridging the gap between basic scientific advances and the understanding of liver disease — the extensively revised new edition of the premier text in the field. The latest edition of The Liver: Biology and Pathobiology remains a definitive volume in the field of hepatology, relating advances in biomedical sciences and engineering to understanding of liver structure, function, and disease pathology and treatment. Contributions from leading researchers examine the cell biology of the liver, the pathobiology of liver disease, the liver’s growth, regeneration, metabolic functions, and more. Now in its sixth edition, this classic text has been exhaustively revised to reflect new discoveries in biology and their influence on diagnosing, managing, and preventing liver disease. Seventy new chapters — including substantial original sections on liver cancer and groundbreaking advances that will have significant impact on hepatology — provide comprehensive, fully up-to-date coverage of both the current state and future direction of hepatology. Topics include liver RNA structure and function, gene editing, single-cell and single-molecule genomic analyses, the molecular biology of hepatitis, drug interactions and engineered drug design, and liver disease mechanisms and therapies. Edited by globally-recognized experts in the field, this authoritative volume: Relates molecular physiology to understanding disease pathology and treatment Links the science and pathology of the liver to practical clinical applications Features 16 new “Horizons” chapters that explore new and emerging science and technology Includes plentiful full-color illustrations and figures The Liver: Biology and Pathobiology, Sixth Edition is an indispensable resource for practicing and trainee hepatologists, gastroenterologists, hepatobiliary and liver transplant surgeons, and researchers and scientists in areas including hepatology, cell and molecular biology, virology, and drug metabolism.




Cellular and Molecular Pathobiology of Cardiovascular Disease


Book Description

Cellular and Molecular Pathobiology of Cardiovascular Disease focuses on the pathophysiology of common cardiovascular disease in the context of its underlying mechanisms and molecular biology. This book has been developed from the editors' experiences teaching an advanced cardiovascular pathology course for PhD trainees in the biomedical sciences, and trainees in cardiology, pathology, public health, and veterinary medicine. No other single text-reference combines clinical cardiology and cardiovascular pathology with enough molecular content for graduate students in both biomedical research and clinical departments. The text is complemented and supported by a rich variety of photomicrographs, diagrams of molecular relationships, and tables. It is uniquely useful to a wide audience of graduate students and post-doctoral fellows in areas from pathology to physiology, genetics, pharmacology, and more, as well as medical residents in pathology, laboratory medicine, internal medicine, cardiovascular surgery, and cardiology. - Explains how to identify cardiovascular pathologies and compare with normal physiology to aid research - Gives concise explanations of key issues and background reading suggestions - Covers molecular bases of diseases for better understanding of molecular events that precede or accompany the development of pathology




Endothelial Cell Biology in Health and Disease


Book Description

Although blood capillaries were first observed through a flea-lens microscope by Malpighi in 1661,200 more years elapsed before the cellular nature of the vessel wall was conclusively demonstrated. Beginning with the middle of the 19th cen tury, our knowledge of the histological organization of blood vessels has steadily increased. However, the endothelium, which for a long time was considered to be just an inert barrier lining, had been barely explored until three decades ago. Since then, there has been an upsurge of interest in the fine structure and function of endothelial cells. Intense in vivo and in vitro investigations have revealed that the endothelial cell is a key element in a wide variety of normal activities and diseases. A large number of investigators and laboratories have been attracted to endothelial cell research, thus supporting the expansion of the continuously grow ing and diversifying field of endotheliology. The number of articles published annually on this subject has increased from a few score at the beginning of the 1970s to more than a thousand in recent years, and an increasing number of journals, books, societies, and symposia focused primarily on the vascular en dothelium have marked the last decade.




Pathobiology of the Endothelial Cell


Book Description

Pathobiology of the Endothelial Cell presents the proceedings of the symposium on the "Pathobiology of the Endothelial Cell" held at Arden House, on the Harriman Campus of Columbia University on June 5-7, 1981. The book discusses the endothelial growth regulation; the stimulation of vascular cell growth by macrophage products; and the control of proliferation and differentiation of endothelial cells. The text also describes vessel wall growth control; the implications of angiogenesis in vitro for tumor biology; and the interactions and activation of coagulation proteases. Platelet adhesion and fibrinogen proteolysis; endothelial protein synthesis; prostaglandins, and endothelial cell-cell interactions are also considered. The book further tackles topics on vascular pathobiology. Biologists, pathologists, biochemists, hematologists, oncologists, immunologists, and microbiologists will find the text invaluable.




Biology of Endothelial Cells


Book Description

The participation of endothelial cells in various physiologic and pathologic processes has been hypothesized since before the turn of the century. However, until recently, direct evidence for endothelial involvement in these processes has been extremely difficult to obtain due to the inability to study endothelial cell function in vitro. Though the possibility of using cultured endothelial cells to study endothelial cell function in vitro was recognized many years ago, the inability to culture unambiguously identifiable endothelial cells limited investigators in their studies of endothelial function. As a result, the field of endothelial cell biology lay relatively fallow for many years. The development in the early 1970's of routine and easily implemented methods for culturing human endothelial cells and the demonstration that cultured endothelial cells synthesized a physiologically relevant protein, Factor VIII/von Willebrand Factor, quickly changed this state of affairs. Over the following decade the scope of endothelial cell research rapidly widened, spreading in a number of directions. First, methods were developed to culture endothelial cells from a variety of species. Second, methods were developed to culture endothelial cells from different organs and types of blood vessels (arteries, veins, and capillaries) within a single species. Third, and most important, investigators began using cultured endothelial cells as tools to study the potential involvement of endothelial cells in a wide assortment of biologically interesting processes. The net result has been a tremendous increase in our understanding of endothelial cell function.




Regulation of Endothelial Barrier Function


Book Description

The vascular endothelium lining the inner surface of blood vessels serves as the first interface for circulating blood components to interact with cells of the vascular wall and surrounding extravascular tissues. In addition to regulating blood delivery and perfusion, a major function of vascular endothelia, especially those in exchange microvessels (capillaries and postcapillary venules), is to provide a semipermeable barrier that controls blood–tissue exchange of fluids, nutrients, and metabolic wastes while preventing pathogens or harmful materials in the circulation from entering into tissues. During host defense against infection or tissue injury, endothelial barrier dysfunction occurs as a consequence as well as cause of inflammatory responses. Plasma leakage disturbs fluid homeostasis and impairs tissue oxygenation, a pathophysiological process contributing to multiple organ dysfunction associated with trauma, infection, metabolic disorder, and other forms of disease. In this book, we provide an updated overview of microvascular endothelial barrier structure and function in health and disease. The discussion is initiated with the basic physiological principles of fluid and solute transport across microvascular endothelium, followed by detailed information on endothelial cell–cell and cell–matrix interactions and the experimental techniques that are employed to measure endothelial permeability. Further discussion focuses on the signaling and molecular mechanisms of endothelial barrier responses to various stimulations or drugs, as well as their relevance to several common clinical conditions. Taken together, this book provides a comprehensive analysis of microvascular endothelial cell and molecular pathophysiology. Such information will assist scientists and clinicians in advanced basic and clinical research for improved health care.




Pathology: The Big Picture


Book Description

Get the BIG PICTURE of Pathology - and focus on what you really need to know to score high on the course and board exam If you want a streamlined and definitive look at Pathology - one with just the right balance of information to give you the edge at exam time - turn to Pathology: The Big Picture. You'll find a succinct, user-friendly presentation especially designed to make even the most complex concept understandable in the shortest amount of study time possible. This perfect pictorial and textual overview of Pathology delivers: A “Big Picture” emphasis on what you must know verses “what's nice to know” Expert authorship by award-winning, active instructors Coverage of the full range of pathology topics - everything from cellular adaptations and injury to genetic disorders to inflammation to diseases of immunity Magnificent 4-color illustrations Numerous summary tables and figures for quick reference and rapid retention of even the most difficult topic Highlighted key concepts that underscore integral aspects of histology (key concepts are also listed in a table at the end of each chapter) USMLE-type questions, answers, and explanations to help you anticipate what you'll encounter on the exams And much more!




The Immunology of Cardiovascular Homeostasis and Pathology


Book Description

Cardiovascular immunology is a newly emerging research area, investigating the crosstalk between the cardiovascular and the immune system. This crosstalk is evident through (1) crucial immunological capacities and functions of cardiovascular cell types, including cardiomyocytes, fibroblasts, endothelial cells, pericytes and cardiac resident macrophages, (2) the impact of aberrant immune function on the development of cardiovascular disease such as atherosclerosis, direct and indirect immune-mediated heart disease and vasculitis, and (3) the crucial role of the immune system in cardiac repair and regeneration. The Immunology of Cardiovascular Homeostasis and Pathology covers all these aspects of cardiovascular immunology, starting with homeostatic immunological functions of traditional cardiovascular cell types, and moving then to the role of the immune system in cardiovascular pathology and to recent research into targeting the immune system to boost cardiac healing and regeneration.




Nitric Oxide


Book Description

Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects--basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. - Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide - Authored by world experts on nitric oxide - Includes an overview of basic principles of biology and chemical biology - Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense