Radiology Fundamentals


Book Description

Radiology Fundamentals is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imaging modalities and technology, including ultrasound, computed tomography, magnetic resonance imaging, and nuclear medicine. The main scope of the book is to present concise chapters organized by anatomic region and radiology sub-specialty that highlight the radiologist’s role in diagnosing and treating common diseases, disorders, and conditions. Highly illustrated with images and diagrams, each chapter in Radiology Fundamentals begins with learning objectives to aid readers in recognizing important points and connecting the basic radiology concepts that run throughout the text. It is the editors’ hope that this valuable, up-to-date resource will foster and further stimulate self-directed radiology learning—the process at the heart of medical education.




Review of Radiologic Physics


Book Description

Offering a complete review for radiology residents and radiologic technologists preparing for certification, Review of Radiologic Physics, 5th Edition, by Dr. William F. Sensakovic, is a high-yield, efficient resource for today’s clinically focused exams. Now fully up to date, this edition covers x-ray production and interactions, projection and tomographic imaging, image quality, radiobiology, radiation protection, nuclear medicine, ultrasound, and magnetic resonance—all of the important physics information you need to understand the factors that improve or degrade image quality.







Radiation Dose Management of Pregnant Patients, Pregnant Staff and Paediatric Patients


Book Description

Whenever a diagnostic or interventional X-ray examination of a pregnant patient is considered to be necessary, conceptus dose estimation is an essential step in assessing the radiogenic risks to the unborn child. Accurate estimation of embryo/fetus radiation dose is also needed after accidental exposure of a pregnant patient from an X-ray procedure. The exposure of pregnant patients to medical X-rays is often a complex case and involves emotionally sensitive issues for both prospective parents and physicians. Conceptus dose assessment is not always easy. Medical physicists should be able to assess conceptus doses and risks from diagnostic and interventional procedures and also to place the risk in a perspective from which an informed decision can be made. Pregnant medical professionals working with radiation have many misconceptions about the risks of ionizing radiation on the unborn child. Medical radiation workers of childbearing age should be aware that careful planning and dose optimization of examinations can address their concerns and permit, in the vast majority of cases, safe performance of procedures. Pediatric patients requiring diagnostic and interventional procedures are exposed to diagnostic and interventional X-rays. Pediatric patients are more sensitive to radiation than adults and, for this reason, accurate assessment of doses and risks is needed in these cases. Medical physicists should be able to assess paediatric doses and risks from diagnostic and interventional procedures. Several techniques and tools have been developed for dose optimization of radiographic, fluoroscopic, computed tomography and fluoroscopically-guided interventional pediatric procedures. The scan parameters should be adjusted for patient size and body region. Part of Series in Physics and Engineering in Medicine and Biology.




ICRP Publication 139


Book Description




Medical Imaging Systems


Book Description

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.







Referral Guidelines for Imaging


Book Description

This booklet sets out referral guidelines that can be used by health professionals qualified to refer patients for imaging. It has evolved from the booklet 'Making the best use of a department of clinical radiology: guidelines for doctors' published by the Royal College of Radiologists in 1998 and can be adopted as a model for Member States. The EU Council Directive 1997/43/EURATOM declared that Member States shall promote the establishment and use of diagnostic reference levels for radiological examinations and guidance thereof. These referral guidelines can be used for that purpose.




Health Risks from Exposure to Low Levels of Ionizing Radiation


Book Description

This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.




Diagnostic Radiology Physics


Book Description

This publication is aimed at students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides a comprehensive overview of the basic medical physics knowledge required in the form of a syllabus for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.