Pattern Recognition Applications and Methods


Book Description

This book contains revised and extended versions of selected papers from the 7th International Conference on Pattern Recognition, ICPRAM 2018, held in Porto, Portugal, in January 2018. The 10 full papers presented were carefully reviewed and selected from 102 initial submissions. The core of ICPRAM is intended to include theoretical studies yielding new insights in Pattern Recognition methods, as well as experimental validation and concrete application of Pattern Recognition techniques to real-world problems.




Pattern Recognition


Book Description

The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.




Pattern Recognition Applications and Methods


Book Description

This book contains revised and extended versions of selected papers from the 8th International Conference on Pattern Recognition, ICPRAM 2019, held in Prague, Czech Republic, in February 2019. The 25 full papers presented together 52 short papers and 32 poster sessions were carefully reviewed and selected from 138 initial submissions. Contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods are especially encouraged.




Pattern Recognition Applications and Methods


Book Description

This book contains revised and extended versions of selected papers from the 5th International Conference on Pattern Recognition, ICPRAM 2016, held in Rome, Italy, in February 2016. The 13 full papers were carefully reviewed and selected from 125 initial submissions and describe up-to-date applications of pattern recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance pattern recognition methods.




Syntactic Pattern Recognition, Applications


Book Description

The many different mathematical techniques used to solve pattem recognition problems may be grouped into two general approaches: the decision-theoretic (or discriminant) approach and the syntactic (or structural) approach. In the decision-theoretic approach, aset of characteristic measurements, called features, are extracted from the pattems. Each pattem is represented by a feature vector, and the recognition of each pattem is usually made by partitioning the feature space. Applications of decision-theoretic approach indude character recognition, medical diagnosis, remote sensing, reliability and socio-economics. A relatively new approach is the syntactic approach. In the syntactic approach, ea ch pattem is expressed in terms of a composition of its components. The recognition of a pattem is usually made by analyzing the pattem structure according to a given set of rules. Earlier applications of the syntactic approach indude chromosome dassification, English character recognition and identification of bubble and spark chamber events. The purpose of this monograph is to provide a summary of the major reeent applications of syntactic pattem recognition. After a brief introduction of syntactic pattem recognition in Chapter 1, the nin e mai n chapters (Chapters 2-10) can be divided into three parts. The first three chapters concem with the analysis of waveforms using syntactic methods. Specific application examples indude peak detection and interpretation of electro cardiograms and the recognition of speech pattems. The next five chapters deal with the syntactic recognition of two-dimensional pictorial pattems.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.




Pattern Recognition Applications and Methods


Book Description

This book contains revised and extended versions of selected papers from the 6th International Conference on Pattern Recognition, ICPRAM 2017, held in Porto, Portugal, in February 2017. The 13 full papers presented were carefully reviewed and selected from 139 initial submissions. They aim at making visible and understandable the relevant trends of current research on pattern recognition.




Markov Models for Pattern Recognition


Book Description

This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.




Pattern Recognition - Applications and Methods


Book Description

This edited book includes extended and revised versions of a set of selected papers from the First International Conference on Pattern Recognition (ICPRAM 2012), held in Vilamoura, Algarve, Portugal, from 6 to 8 February, 2012, sponsored by the Institute for Systems and Technologies of Information Control and Communication (INSTICC) and held in cooperation with the Association for the Advancement of Artificial Intelligence (AAAI) and Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL2). The conference brought together researchers, engineers and practitioners interested on the areas of Pattern Recognition, both from theoretical and application perspectives.




Pattern Recognition and Classification


Book Description

The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.