Pattern Recognition Using Neural Networks


Book Description

Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions.




Neural Networks for Pattern Recognition


Book Description

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.




Pattern Recognition Using Neural and Functional Networks


Book Description

Biologically inspiredcomputing isdi?erentfromconventionalcomputing.Ithas adi?erentfeel; often the terminology does notsound like it’stalkingabout machines.The activities ofthiscomputingsoundmorehumanthanmechanistic as peoplespeak ofmachines that behave, react, self-organize,learn, generalize, remember andeven to forget.Much ofthistechnology tries to mimic nature’s approach in orderto mimicsome of nature’s capabilities.They havearigorous, mathematical basisand neuralnetworks forexamplehaveastatistically valid set on which the network istrained. Twooutlinesaresuggestedasthepossibletracksforpatternrecognition.They are neuralnetworks andfunctionalnetworks.NeuralNetworks (many interc- nected elements operating in parallel) carryout tasks that are not only beyond the scope ofconventionalprocessing but also cannotbeunderstood in the same terms.Imagingapplicationsfor neuralnetworksseemtobea natural?t.Neural networks loveto do pattern recognition. A new approachto pattern recognition usingmicroARTMAP together with wavelet transforms in the context ofhand written characters,gestures andsignatures havebeen dealt.The KohonenN- work,Back Propagation Networks andCompetitive Hop?eld NeuralNetwork havebeen considered for various applications. Functionalnetworks,beingageneralizedformofNeuralNetworkswherefu- tionsarelearnedratherthanweightsiscomparedwithMultipleRegressionAn- ysisforsome applicationsandtheresults are seen to be coincident. New kinds of intelligence can be added to machines, and we will havethe possibilityof learningmore about learning.Thus our imaginationsand options are beingstretched.These new machines will be fault-tolerant,intelligentand self-programmingthustryingtomakethemachinessmarter.Soastomakethose who use the techniques even smarter. Chapter1 isabrief introduction toNeural and Functionalnetworks in the context of Patternrecognitionusing these disciplinesChapter2 givesa review ofthearchitectures relevantto the investigation andthedevelopment ofthese technologies in the past few decades. Retracted VIII Preface Chapter3begins with the lookattherecognition ofhandwritten alphabets usingthealgorithm for ordered list ofboundary pixelsas well as the Ko- nenSelf-Organizing Map (SOM).Chapter 4 describes the architecture ofthe MicroARTMAP and its capability.




Pattern Recognition and Neural Networks


Book Description

This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.




Adaptive Pattern Recognition and Neural Networks


Book Description

A coherent introduction to the basic concepts of pattern recognition, incorporating recent advances from AI, neurobiology, engineering, and other disciplines. Treats specifically the implementation of adaptive pattern recognition to neural networks. Annotation copyright Book News, Inc. Portland, Or.




Artificial Neural Networks in Pattern Recognition


Book Description

This book constitutes the refereed proceedings of the 8th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2018, held in Siena, Italy, in September 2018. The 29 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 35 submissions. The papers present and discuss the latest research in all areas of neural network- and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications. Chapter "Bounded Rational Decision-Making with Adaptive Neural Network Priors" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM


Book Description

This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.




Information Security and Assurance


Book Description

Advanced Science and Technology, Advanced Communication and Networking, Information Security and Assurance, Ubiquitous Computing and Multimedia Appli- tions are conferences that attract many academic and industry professionals. The goal of these co-located conferences is to bring together researchers from academia and industry as well as practitioners to share ideas, problems and solutions relating to the multifaceted aspects of advanced science and technology, advanced communication and networking, information security and assurance, ubiquitous computing and m- timedia applications. This co-located event included the following conferences: AST 2010 (The second International Conference on Advanced Science and Technology), ACN 2010 (The second International Conference on Advanced Communication and Networking), ISA 2010 (The 4th International Conference on Information Security and Assurance) and UCMA 2010 (The 2010 International Conference on Ubiquitous Computing and Multimedia Applications). We would like to express our gratitude to all of the authors of submitted papers and to all attendees, for their contributions and participation. We believe in the need for continuing this undertaking in the future. We acknowledge the great effort of all the Chairs and the members of advisory boards and Program Committees of the above-listed events, who selected 15% of over 1,000 submissions, following a rigorous peer-review process. Special thanks go to SERSC (Science & Engineering Research Support soCiety) for supporting these - located conferences.




Neural Networks and Machine Learning


Book Description

In recent years neural computing has emerged as a practical technology, with successful applications in many fields. The majority of these applications are concerned with problems in pattern recognition, and make use of feedforward network architectures such as the multilayer perceptron and the radial basis function network. Also, it has become widely acknowledged that successful applications of neural computing require a principled, rather than ad hoc, approach. (From the preface to "Neural Networks for Pattern Recognition" by C.M. Bishop, Oxford Univ Press 1995.) This NATO volume, based on a 1997 workshop, presents a coordinated series of tutorial articles covering recent developments in the field of neural computing. It is ideally suited to graduate students and researchers.




From Statistics to Neural Networks


Book Description

The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting brought to gether over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, USA), J. Moody (OGI, USA), G. Palm (U1m, Germany), B. Ripley (Oxford, UK), R. Tibshirani (Toronto, Canada), H. Wechsler (GMU, USA), C. Wellekens (Eurecom, France) and H. White (San Diego, USA). The ASI consisted of lectures overviewing major aspects of statistical and neural network learning, their links to biological learning and non-linear dynamics (chaos), and real-life examples of pattern recognition applications. As a result of lively interactions between the participants, the following topics emerged as major themes of the meeting: (1) Unified framework for the study of Predictive Learning in Statistics and Artificial Neural Networks (ANNs); (2) Differences and similarities between statistical and ANN methods for non parametric estimation from examples (learning); (3) Fundamental connections between artificial learning systems and biological learning systems.